Logistic function with a slope but no asymptotes?Has Arcsinh ever been considered as a neural network activation function?Effect of e when using the Sigmoid Function as an activation functionApproximation of Δoutput in context of Sigmoid functionModification of Sigmoid functionFinding the center of a logistic curveInput and Output range of the composition of Gaussian and Sigmoidal functions and it's entropyFinding the slope at different points in a sigmoid curveQuestion about Sigmoid Function in Logistic RegressionHas Arcsinh ever been considered as a neural network activation function?The link between logistic regression and logistic sigmoidHow can I even out the output of the sigmoid function?
Non-trope happy ending?
Why is so much work done on numerical verification of the Riemann Hypothesis?
Is this part of the description of the Archfey warlock's Misty Escape feature redundant?
Multiplicative persistence
What is Cash Advance APR?
Giving feedback to someone without sounding prejudiced
Why do ¬, ∀ and ∃ have the same precedence?
How to draw a matrix with arrows in limited space
Why does this expression simplify as such?
Doesn't the system of the Supreme Court oppose justice?
Will number of steps recorded on FitBit/any fitness tracker add up distance in PokemonGo?
Why can't the Brexit deadlock in the UK parliament be solved with a plurality vote?
Which was the first story featuring espers?
Does the reader need to like the PoV character?
Why is the "ls" command showing permissions of files in a FAT32 partition?
How much theory knowledge is actually used while playing?
15% tax on $7.5k earnings. Is that right?
How to preserve electronics (computers, iPads and phones) for hundreds of years
Did the UK lift the requirement for registering SIM cards?
Creating two special characters
Why does AES have exactly 10 rounds for a 128-bit key, 12 for 192 bits and 14 for a 256-bit key size?
Can I cause damage to electrical appliances by unplugging them when they are turned on?
Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?
What is the English pronunciation of "pain au chocolat"?
Logistic function with a slope but no asymptotes?
Has Arcsinh ever been considered as a neural network activation function?Effect of e when using the Sigmoid Function as an activation functionApproximation of Δoutput in context of Sigmoid functionModification of Sigmoid functionFinding the center of a logistic curveInput and Output range of the composition of Gaussian and Sigmoidal functions and it's entropyFinding the slope at different points in a sigmoid curveQuestion about Sigmoid Function in Logistic RegressionHas Arcsinh ever been considered as a neural network activation function?The link between logistic regression and logistic sigmoidHow can I even out the output of the sigmoid function?
$begingroup$
The logistic function has an output range 0 to 1, and asymptotic slope is zero on both sides.
What is an alternative to a logistic function that doesn't flatten out completely at its ends? Whose asymptotic slopes are approaching zero but not zero, and the range is infinite?
sigmoid-curve
$endgroup$
|
show 4 more comments
$begingroup$
The logistic function has an output range 0 to 1, and asymptotic slope is zero on both sides.
What is an alternative to a logistic function that doesn't flatten out completely at its ends? Whose asymptotic slopes are approaching zero but not zero, and the range is infinite?
sigmoid-curve
$endgroup$
2
$begingroup$
The title seems to disagree with how i read your question -- is this new function required to have asymptotes or not?
$endgroup$
– jld
yesterday
$begingroup$
Basically I want a function that looks like sigmoid but has a slope
$endgroup$
– Aksakal
yesterday
$begingroup$
I just updated -- is that more what you mean? I'm still not sure what you mean by a "slope". Do you mean a sigmoid shape but with $lim_xtopminftyf(x) = pm infty$, i.e. it doesn't flatten out into horizontal asymptotes at $|x|$ grows?
$endgroup$
– jld
yesterday
5
$begingroup$
$operatornamesign(x)log(1 + |x|)$?
$endgroup$
– steveo'america
yesterday
3
$begingroup$
Beginning of the decade called, it wants its neural network activation functions back. (Sorry bad joke, but realistically this is why people moved to ReLUs) (+1 though, relevant question)
$endgroup$
– usεr11852
yesterday
|
show 4 more comments
$begingroup$
The logistic function has an output range 0 to 1, and asymptotic slope is zero on both sides.
What is an alternative to a logistic function that doesn't flatten out completely at its ends? Whose asymptotic slopes are approaching zero but not zero, and the range is infinite?
sigmoid-curve
$endgroup$
The logistic function has an output range 0 to 1, and asymptotic slope is zero on both sides.
What is an alternative to a logistic function that doesn't flatten out completely at its ends? Whose asymptotic slopes are approaching zero but not zero, and the range is infinite?
sigmoid-curve
sigmoid-curve
edited 19 hours ago
Neil G
9,79012970
9,79012970
asked yesterday
AksakalAksakal
39k452120
39k452120
2
$begingroup$
The title seems to disagree with how i read your question -- is this new function required to have asymptotes or not?
$endgroup$
– jld
yesterday
$begingroup$
Basically I want a function that looks like sigmoid but has a slope
$endgroup$
– Aksakal
yesterday
$begingroup$
I just updated -- is that more what you mean? I'm still not sure what you mean by a "slope". Do you mean a sigmoid shape but with $lim_xtopminftyf(x) = pm infty$, i.e. it doesn't flatten out into horizontal asymptotes at $|x|$ grows?
$endgroup$
– jld
yesterday
5
$begingroup$
$operatornamesign(x)log(1 + |x|)$?
$endgroup$
– steveo'america
yesterday
3
$begingroup$
Beginning of the decade called, it wants its neural network activation functions back. (Sorry bad joke, but realistically this is why people moved to ReLUs) (+1 though, relevant question)
$endgroup$
– usεr11852
yesterday
|
show 4 more comments
2
$begingroup$
The title seems to disagree with how i read your question -- is this new function required to have asymptotes or not?
$endgroup$
– jld
yesterday
$begingroup$
Basically I want a function that looks like sigmoid but has a slope
$endgroup$
– Aksakal
yesterday
$begingroup$
I just updated -- is that more what you mean? I'm still not sure what you mean by a "slope". Do you mean a sigmoid shape but with $lim_xtopminftyf(x) = pm infty$, i.e. it doesn't flatten out into horizontal asymptotes at $|x|$ grows?
$endgroup$
– jld
yesterday
5
$begingroup$
$operatornamesign(x)log(1 + |x|)$?
$endgroup$
– steveo'america
yesterday
3
$begingroup$
Beginning of the decade called, it wants its neural network activation functions back. (Sorry bad joke, but realistically this is why people moved to ReLUs) (+1 though, relevant question)
$endgroup$
– usεr11852
yesterday
2
2
$begingroup$
The title seems to disagree with how i read your question -- is this new function required to have asymptotes or not?
$endgroup$
– jld
yesterday
$begingroup$
The title seems to disagree with how i read your question -- is this new function required to have asymptotes or not?
$endgroup$
– jld
yesterday
$begingroup$
Basically I want a function that looks like sigmoid but has a slope
$endgroup$
– Aksakal
yesterday
$begingroup$
Basically I want a function that looks like sigmoid but has a slope
$endgroup$
– Aksakal
yesterday
$begingroup$
I just updated -- is that more what you mean? I'm still not sure what you mean by a "slope". Do you mean a sigmoid shape but with $lim_xtopminftyf(x) = pm infty$, i.e. it doesn't flatten out into horizontal asymptotes at $|x|$ grows?
$endgroup$
– jld
yesterday
$begingroup$
I just updated -- is that more what you mean? I'm still not sure what you mean by a "slope". Do you mean a sigmoid shape but with $lim_xtopminftyf(x) = pm infty$, i.e. it doesn't flatten out into horizontal asymptotes at $|x|$ grows?
$endgroup$
– jld
yesterday
5
5
$begingroup$
$operatornamesign(x)log(1 + |x|)$?
$endgroup$
– steveo'america
yesterday
$begingroup$
$operatornamesign(x)log(1 + |x|)$?
$endgroup$
– steveo'america
yesterday
3
3
$begingroup$
Beginning of the decade called, it wants its neural network activation functions back. (Sorry bad joke, but realistically this is why people moved to ReLUs) (+1 though, relevant question)
$endgroup$
– usεr11852
yesterday
$begingroup$
Beginning of the decade called, it wants its neural network activation functions back. (Sorry bad joke, but realistically this is why people moved to ReLUs) (+1 though, relevant question)
$endgroup$
– usεr11852
yesterday
|
show 4 more comments
3 Answers
3
active
oldest
votes
$begingroup$
Initially I was thinking you did want the horizontal asymptotes at $0$ still; I moved my original answer to the end. If you instead want $lim_xtopm infty f(x) = pminfty$ then would something like the inverse hyperbolic sine work?
$$
textasinh(x) = logleft(x + sqrt1 + x^2right)
$$
This is unbounded but grows like $log$ for large $|x|$ and looks like
I like this function a lot as a data transformation when I've got heavy tails but possibly zeros or negative values.
Another nice thing about this function is that $textasinh'(x) = frac1sqrt1+x^2$ so it has a nice simple derivative.
Original answer
$newcommandevarepsilon$Let $f : mathbb Rtomathbb R$ be our function and we'll assume
$$
lim_xtopm infty f(x) = 0.
$$
Suppose $f$ is continuous. Fix $e > 0$. From the asymptotes we have
$$
exists x_1 : x < x_1 implies |f(x)| < e
$$
and analogously there's an $x_2$ such that $x > x_2 implies |f(x)| < e$. Therefore outside of $[x_1,x_2]$ $f$ is within $(-e, e)$. And $[x_1,x_2]$ is a compact interval so by continuity $f$ is bounded on it.
This means that any such function can't be continuous. Would something like
$$
f(x) = begincases x^-1 & xneq 0 \ 0 & x = 0endcases
$$ work?
$endgroup$
1
$begingroup$
The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
$endgroup$
– Sycorax
yesterday
$begingroup$
@Sycorax thanks, i was wondering about that
$endgroup$
– jld
yesterday
$begingroup$
My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
$endgroup$
– Ingolifs
yesterday
add a comment |
$begingroup$
You could just add a term to a logistic function:
$$
f(x; a, b, c, d, e)=fraca1+bexp(-cx) + dx + e
$$
The asymptotes will have slopes $d$.
Here is an example with $a=10, b = 1, c = 2, d = frac120, e = -5$:
$endgroup$
1
$begingroup$
I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
$endgroup$
– user1717828
yesterday
add a comment |
$begingroup$
I will go ahead and turn the comment into an answer. I suggest
$$
f(x) = operatornamesign(x)logright),
$$
which has slope tending towards zero, but is unbounded.
edit by popular demand, a plot, for $|x|le 30$:
$endgroup$
2
$begingroup$
a graph of the function would be useful
$endgroup$
– qwr
18 hours ago
$begingroup$
@qwr and done...
$endgroup$
– steveo'america
4 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "65"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398551%2flogistic-function-with-a-slope-but-no-asymptotes%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Initially I was thinking you did want the horizontal asymptotes at $0$ still; I moved my original answer to the end. If you instead want $lim_xtopm infty f(x) = pminfty$ then would something like the inverse hyperbolic sine work?
$$
textasinh(x) = logleft(x + sqrt1 + x^2right)
$$
This is unbounded but grows like $log$ for large $|x|$ and looks like
I like this function a lot as a data transformation when I've got heavy tails but possibly zeros or negative values.
Another nice thing about this function is that $textasinh'(x) = frac1sqrt1+x^2$ so it has a nice simple derivative.
Original answer
$newcommandevarepsilon$Let $f : mathbb Rtomathbb R$ be our function and we'll assume
$$
lim_xtopm infty f(x) = 0.
$$
Suppose $f$ is continuous. Fix $e > 0$. From the asymptotes we have
$$
exists x_1 : x < x_1 implies |f(x)| < e
$$
and analogously there's an $x_2$ such that $x > x_2 implies |f(x)| < e$. Therefore outside of $[x_1,x_2]$ $f$ is within $(-e, e)$. And $[x_1,x_2]$ is a compact interval so by continuity $f$ is bounded on it.
This means that any such function can't be continuous. Would something like
$$
f(x) = begincases x^-1 & xneq 0 \ 0 & x = 0endcases
$$ work?
$endgroup$
1
$begingroup$
The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
$endgroup$
– Sycorax
yesterday
$begingroup$
@Sycorax thanks, i was wondering about that
$endgroup$
– jld
yesterday
$begingroup$
My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
$endgroup$
– Ingolifs
yesterday
add a comment |
$begingroup$
Initially I was thinking you did want the horizontal asymptotes at $0$ still; I moved my original answer to the end. If you instead want $lim_xtopm infty f(x) = pminfty$ then would something like the inverse hyperbolic sine work?
$$
textasinh(x) = logleft(x + sqrt1 + x^2right)
$$
This is unbounded but grows like $log$ for large $|x|$ and looks like
I like this function a lot as a data transformation when I've got heavy tails but possibly zeros or negative values.
Another nice thing about this function is that $textasinh'(x) = frac1sqrt1+x^2$ so it has a nice simple derivative.
Original answer
$newcommandevarepsilon$Let $f : mathbb Rtomathbb R$ be our function and we'll assume
$$
lim_xtopm infty f(x) = 0.
$$
Suppose $f$ is continuous. Fix $e > 0$. From the asymptotes we have
$$
exists x_1 : x < x_1 implies |f(x)| < e
$$
and analogously there's an $x_2$ such that $x > x_2 implies |f(x)| < e$. Therefore outside of $[x_1,x_2]$ $f$ is within $(-e, e)$. And $[x_1,x_2]$ is a compact interval so by continuity $f$ is bounded on it.
This means that any such function can't be continuous. Would something like
$$
f(x) = begincases x^-1 & xneq 0 \ 0 & x = 0endcases
$$ work?
$endgroup$
1
$begingroup$
The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
$endgroup$
– Sycorax
yesterday
$begingroup$
@Sycorax thanks, i was wondering about that
$endgroup$
– jld
yesterday
$begingroup$
My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
$endgroup$
– Ingolifs
yesterday
add a comment |
$begingroup$
Initially I was thinking you did want the horizontal asymptotes at $0$ still; I moved my original answer to the end. If you instead want $lim_xtopm infty f(x) = pminfty$ then would something like the inverse hyperbolic sine work?
$$
textasinh(x) = logleft(x + sqrt1 + x^2right)
$$
This is unbounded but grows like $log$ for large $|x|$ and looks like
I like this function a lot as a data transformation when I've got heavy tails but possibly zeros or negative values.
Another nice thing about this function is that $textasinh'(x) = frac1sqrt1+x^2$ so it has a nice simple derivative.
Original answer
$newcommandevarepsilon$Let $f : mathbb Rtomathbb R$ be our function and we'll assume
$$
lim_xtopm infty f(x) = 0.
$$
Suppose $f$ is continuous. Fix $e > 0$. From the asymptotes we have
$$
exists x_1 : x < x_1 implies |f(x)| < e
$$
and analogously there's an $x_2$ such that $x > x_2 implies |f(x)| < e$. Therefore outside of $[x_1,x_2]$ $f$ is within $(-e, e)$. And $[x_1,x_2]$ is a compact interval so by continuity $f$ is bounded on it.
This means that any such function can't be continuous. Would something like
$$
f(x) = begincases x^-1 & xneq 0 \ 0 & x = 0endcases
$$ work?
$endgroup$
Initially I was thinking you did want the horizontal asymptotes at $0$ still; I moved my original answer to the end. If you instead want $lim_xtopm infty f(x) = pminfty$ then would something like the inverse hyperbolic sine work?
$$
textasinh(x) = logleft(x + sqrt1 + x^2right)
$$
This is unbounded but grows like $log$ for large $|x|$ and looks like
I like this function a lot as a data transformation when I've got heavy tails but possibly zeros or negative values.
Another nice thing about this function is that $textasinh'(x) = frac1sqrt1+x^2$ so it has a nice simple derivative.
Original answer
$newcommandevarepsilon$Let $f : mathbb Rtomathbb R$ be our function and we'll assume
$$
lim_xtopm infty f(x) = 0.
$$
Suppose $f$ is continuous. Fix $e > 0$. From the asymptotes we have
$$
exists x_1 : x < x_1 implies |f(x)| < e
$$
and analogously there's an $x_2$ such that $x > x_2 implies |f(x)| < e$. Therefore outside of $[x_1,x_2]$ $f$ is within $(-e, e)$. And $[x_1,x_2]$ is a compact interval so by continuity $f$ is bounded on it.
This means that any such function can't be continuous. Would something like
$$
f(x) = begincases x^-1 & xneq 0 \ 0 & x = 0endcases
$$ work?
edited yesterday
answered yesterday
jldjld
12.3k23353
12.3k23353
1
$begingroup$
The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
$endgroup$
– Sycorax
yesterday
$begingroup$
@Sycorax thanks, i was wondering about that
$endgroup$
– jld
yesterday
$begingroup$
My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
$endgroup$
– Ingolifs
yesterday
add a comment |
1
$begingroup$
The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
$endgroup$
– Sycorax
yesterday
$begingroup$
@Sycorax thanks, i was wondering about that
$endgroup$
– jld
yesterday
$begingroup$
My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
$endgroup$
– Ingolifs
yesterday
1
1
$begingroup$
The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
$endgroup$
– Sycorax
yesterday
$begingroup$
The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
$endgroup$
– Sycorax
yesterday
$begingroup$
@Sycorax thanks, i was wondering about that
$endgroup$
– jld
yesterday
$begingroup$
@Sycorax thanks, i was wondering about that
$endgroup$
– jld
yesterday
$begingroup$
My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
$endgroup$
– Ingolifs
yesterday
$begingroup$
My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
$endgroup$
– Ingolifs
yesterday
add a comment |
$begingroup$
You could just add a term to a logistic function:
$$
f(x; a, b, c, d, e)=fraca1+bexp(-cx) + dx + e
$$
The asymptotes will have slopes $d$.
Here is an example with $a=10, b = 1, c = 2, d = frac120, e = -5$:
$endgroup$
1
$begingroup$
I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
$endgroup$
– user1717828
yesterday
add a comment |
$begingroup$
You could just add a term to a logistic function:
$$
f(x; a, b, c, d, e)=fraca1+bexp(-cx) + dx + e
$$
The asymptotes will have slopes $d$.
Here is an example with $a=10, b = 1, c = 2, d = frac120, e = -5$:
$endgroup$
1
$begingroup$
I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
$endgroup$
– user1717828
yesterday
add a comment |
$begingroup$
You could just add a term to a logistic function:
$$
f(x; a, b, c, d, e)=fraca1+bexp(-cx) + dx + e
$$
The asymptotes will have slopes $d$.
Here is an example with $a=10, b = 1, c = 2, d = frac120, e = -5$:
$endgroup$
You could just add a term to a logistic function:
$$
f(x; a, b, c, d, e)=fraca1+bexp(-cx) + dx + e
$$
The asymptotes will have slopes $d$.
Here is an example with $a=10, b = 1, c = 2, d = frac120, e = -5$:
answered yesterday
COOLSerdashCOOLSerdash
16.5k75293
16.5k75293
1
$begingroup$
I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
$endgroup$
– user1717828
yesterday
add a comment |
1
$begingroup$
I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
$endgroup$
– user1717828
yesterday
1
1
$begingroup$
I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
$endgroup$
– user1717828
yesterday
$begingroup$
I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
$endgroup$
– user1717828
yesterday
add a comment |
$begingroup$
I will go ahead and turn the comment into an answer. I suggest
$$
f(x) = operatornamesign(x)logright),
$$
which has slope tending towards zero, but is unbounded.
edit by popular demand, a plot, for $|x|le 30$:
$endgroup$
2
$begingroup$
a graph of the function would be useful
$endgroup$
– qwr
18 hours ago
$begingroup$
@qwr and done...
$endgroup$
– steveo'america
4 hours ago
add a comment |
$begingroup$
I will go ahead and turn the comment into an answer. I suggest
$$
f(x) = operatornamesign(x)logright),
$$
which has slope tending towards zero, but is unbounded.
edit by popular demand, a plot, for $|x|le 30$:
$endgroup$
2
$begingroup$
a graph of the function would be useful
$endgroup$
– qwr
18 hours ago
$begingroup$
@qwr and done...
$endgroup$
– steveo'america
4 hours ago
add a comment |
$begingroup$
I will go ahead and turn the comment into an answer. I suggest
$$
f(x) = operatornamesign(x)logright),
$$
which has slope tending towards zero, but is unbounded.
edit by popular demand, a plot, for $|x|le 30$:
$endgroup$
I will go ahead and turn the comment into an answer. I suggest
$$
f(x) = operatornamesign(x)logright),
$$
which has slope tending towards zero, but is unbounded.
edit by popular demand, a plot, for $|x|le 30$:
edited 4 hours ago
answered yesterday
steveo'americasteveo'america
23319
23319
2
$begingroup$
a graph of the function would be useful
$endgroup$
– qwr
18 hours ago
$begingroup$
@qwr and done...
$endgroup$
– steveo'america
4 hours ago
add a comment |
2
$begingroup$
a graph of the function would be useful
$endgroup$
– qwr
18 hours ago
$begingroup$
@qwr and done...
$endgroup$
– steveo'america
4 hours ago
2
2
$begingroup$
a graph of the function would be useful
$endgroup$
– qwr
18 hours ago
$begingroup$
a graph of the function would be useful
$endgroup$
– qwr
18 hours ago
$begingroup$
@qwr and done...
$endgroup$
– steveo'america
4 hours ago
$begingroup$
@qwr and done...
$endgroup$
– steveo'america
4 hours ago
add a comment |
Thanks for contributing an answer to Cross Validated!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398551%2flogistic-function-with-a-slope-but-no-asymptotes%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
The title seems to disagree with how i read your question -- is this new function required to have asymptotes or not?
$endgroup$
– jld
yesterday
$begingroup$
Basically I want a function that looks like sigmoid but has a slope
$endgroup$
– Aksakal
yesterday
$begingroup$
I just updated -- is that more what you mean? I'm still not sure what you mean by a "slope". Do you mean a sigmoid shape but with $lim_xtopminftyf(x) = pm infty$, i.e. it doesn't flatten out into horizontal asymptotes at $|x|$ grows?
$endgroup$
– jld
yesterday
5
$begingroup$
$operatornamesign(x)log(1 + |x|)$?
$endgroup$
– steveo'america
yesterday
3
$begingroup$
Beginning of the decade called, it wants its neural network activation functions back. (Sorry bad joke, but realistically this is why people moved to ReLUs) (+1 though, relevant question)
$endgroup$
– usεr11852
yesterday