Evaluating the integral $int_=pifraczrightzdz$, where the function is not holomorphicEvaluating the integral $int_C textRe z,dz$ from $-4$ to $4$ via lower half of the circleThe meaning of the Imaginary value of the Residue while Evaluating a Real Improper IntegralSupremum of holomorphic function on the unit diskIntegral of $int_-infty^infty left(frac1alpha + ix + frac1alpha - ixright)^2 , dx$Calculate $int_=2z^nsinleft(zright)dz$ for $nin mathbbZ$Improper integral of the form $I=int_0^infty fracsin(ax)x^2+b^2dx$How to integrate the complex function $f(z) = xy$ over the circle $C = [0, r]$Integral of holomorphic function is again holomorphicEvaluating a Path Integral in the Complex PlaneEvaluating $int_-infty^inftyfrace^axcoshxdx $ using contour integration

What is the most common color to indicate the input-field is disabled?

What historical events would have to change in order to make 19th century "steampunk" technology possible?

Do Iron Man suits sport waste management systems?

Car headlights in a world without electricity

What is the fastest integer factorization to break RSA?

What is required to make GPS signals available indoors?

My ex-girlfriend uses my Apple ID to log in to her iPad. Do I have to give her my Apple ID password to reset it?

Is this answer explanation correct?

How to prevent "they're falling in love" trope

How seriously should I take size and weight limits of hand luggage?

ssTTsSTtRrriinInnnnNNNIiinngg

Notepad++ delete until colon for every line with replace all

Processor speed limited at 0.4 Ghz

Why was the shrink from 8″ made only to 5.25″ and not smaller (4″ or less)

What Exploit Are These User Agents Trying to Use?

Where would I need my direct neural interface to be implanted?

How exploitable/balanced is this homebrew spell: Spell Permanency?

Bullying boss launched a smear campaign and made me unemployable

Different meanings of こわい

What is the opposite of "eschatology"?

How can saying a song's name be a copyright violation?

Finitely generated matrix groups whose eigenvalues are all algebraic

Fair gambler's ruin problem intuition

Am I breaking OOP practice with this architecture?



Evaluating the integral $int_=pifraczrightzdz$, where the function is not holomorphic


Evaluating the integral $int_C textRe z,dz$ from $-4$ to $4$ via lower half of the circleThe meaning of the Imaginary value of the Residue while Evaluating a Real Improper IntegralSupremum of holomorphic function on the unit diskIntegral of $int_-infty^infty left(frac1alpha + ix + frac1alpha - ixright)^2 , dx$Calculate $int_leftz^nsinleft(zright)dz$ for $nin mathbbZ$Improper integral of the form $I=int_0^infty fracsin(ax)x^2+b^2dx$How to integrate the complex function $f(z) = xy$ over the circle $C = [0, r]$Integral of holomorphic function is again holomorphicEvaluating a Path Integral in the Complex PlaneEvaluating $int_-infty^inftyfrace^axcoshxdx $ using contour integration













2












$begingroup$


I need to evaluate on the circle $left|zright|=pi$ the integral
$$int_=pifraczrightzdz.$$
The function is not holomorphic there. Anyway, I tried to integrate it using polar coordinates and simplyfing the modulo and I got $2pi e^-pi$ while the result should be $2pi^2 ie^-pi$.
I'm sure is trivial and I overlooked a stupid error. Can anybody tell me where?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Possible mistake: forgotten $pi i$ in $dz$.
    $endgroup$
    – Martín-Blas Pérez Pinilla
    2 days ago










  • $begingroup$
    Couple things: 1) when making a post like this please show your work 2) You say the function is not holomorphic "there" - just to be clear, it's holomorphic on the circle you're integrating on, just not inside the circle
    $endgroup$
    – Brevan Ellefsen
    2 days ago











  • $begingroup$
    @BrevanEllefsen why do you say it's holomorphic on the circle $|z|=pi$ can you show me how you got this? Using Cauchy Riemann equation in polar coordinates it seems it's holomorphic only on the circle $|z|=1$
    $endgroup$
    – Dac0
    2 days ago











  • $begingroup$
    @Dac0 your function is a scalar multiple of $int_D z^-1$ where $D$ is the circle of radius $pi$. The integrand is holomorphic everywhere but at the origin, which does not lie on your circle (it's inside it... In the exact middle)
    $endgroup$
    – Brevan Ellefsen
    2 days ago










  • $begingroup$
    @BrevanEllefsen I used for the Cauchy Riemann equation $fracpartial fpartial r=-fracirfracpartial fpartialtheta$ and then you have $fracpartial fpartial r=-e^-re^-itheta$ and $fracpartial fpartialtheta=-fracire^-re^-itheta$ so should be $r=1$. What am I doing wrong?
    $endgroup$
    – Dac0
    2 days ago
















2












$begingroup$


I need to evaluate on the circle $left|zright|=pi$ the integral
$$int_=pifraczrightzdz.$$
The function is not holomorphic there. Anyway, I tried to integrate it using polar coordinates and simplyfing the modulo and I got $2pi e^-pi$ while the result should be $2pi^2 ie^-pi$.
I'm sure is trivial and I overlooked a stupid error. Can anybody tell me where?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Possible mistake: forgotten $pi i$ in $dz$.
    $endgroup$
    – Martín-Blas Pérez Pinilla
    2 days ago










  • $begingroup$
    Couple things: 1) when making a post like this please show your work 2) You say the function is not holomorphic "there" - just to be clear, it's holomorphic on the circle you're integrating on, just not inside the circle
    $endgroup$
    – Brevan Ellefsen
    2 days ago











  • $begingroup$
    @BrevanEllefsen why do you say it's holomorphic on the circle $|z|=pi$ can you show me how you got this? Using Cauchy Riemann equation in polar coordinates it seems it's holomorphic only on the circle $|z|=1$
    $endgroup$
    – Dac0
    2 days ago











  • $begingroup$
    @Dac0 your function is a scalar multiple of $int_D z^-1$ where $D$ is the circle of radius $pi$. The integrand is holomorphic everywhere but at the origin, which does not lie on your circle (it's inside it... In the exact middle)
    $endgroup$
    – Brevan Ellefsen
    2 days ago










  • $begingroup$
    @BrevanEllefsen I used for the Cauchy Riemann equation $fracpartial fpartial r=-fracirfracpartial fpartialtheta$ and then you have $fracpartial fpartial r=-e^-re^-itheta$ and $fracpartial fpartialtheta=-fracire^-re^-itheta$ so should be $r=1$. What am I doing wrong?
    $endgroup$
    – Dac0
    2 days ago














2












2








2





$begingroup$


I need to evaluate on the circle $left|zright|=pi$ the integral
$$int_=pifraczrightzdz.$$
The function is not holomorphic there. Anyway, I tried to integrate it using polar coordinates and simplyfing the modulo and I got $2pi e^-pi$ while the result should be $2pi^2 ie^-pi$.
I'm sure is trivial and I overlooked a stupid error. Can anybody tell me where?










share|cite|improve this question











$endgroup$




I need to evaluate on the circle $left|zright|=pi$ the integral
$$int_=pifraczrightzdz.$$
The function is not holomorphic there. Anyway, I tried to integrate it using polar coordinates and simplyfing the modulo and I got $2pi e^-pi$ while the result should be $2pi^2 ie^-pi$.
I'm sure is trivial and I overlooked a stupid error. Can anybody tell me where?







complex-analysis contour-integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago









Asaf Karagila

307k33440773




307k33440773










asked 2 days ago









Dac0Dac0

6,0331937




6,0331937







  • 1




    $begingroup$
    Possible mistake: forgotten $pi i$ in $dz$.
    $endgroup$
    – Martín-Blas Pérez Pinilla
    2 days ago










  • $begingroup$
    Couple things: 1) when making a post like this please show your work 2) You say the function is not holomorphic "there" - just to be clear, it's holomorphic on the circle you're integrating on, just not inside the circle
    $endgroup$
    – Brevan Ellefsen
    2 days ago











  • $begingroup$
    @BrevanEllefsen why do you say it's holomorphic on the circle $|z|=pi$ can you show me how you got this? Using Cauchy Riemann equation in polar coordinates it seems it's holomorphic only on the circle $|z|=1$
    $endgroup$
    – Dac0
    2 days ago











  • $begingroup$
    @Dac0 your function is a scalar multiple of $int_D z^-1$ where $D$ is the circle of radius $pi$. The integrand is holomorphic everywhere but at the origin, which does not lie on your circle (it's inside it... In the exact middle)
    $endgroup$
    – Brevan Ellefsen
    2 days ago










  • $begingroup$
    @BrevanEllefsen I used for the Cauchy Riemann equation $fracpartial fpartial r=-fracirfracpartial fpartialtheta$ and then you have $fracpartial fpartial r=-e^-re^-itheta$ and $fracpartial fpartialtheta=-fracire^-re^-itheta$ so should be $r=1$. What am I doing wrong?
    $endgroup$
    – Dac0
    2 days ago













  • 1




    $begingroup$
    Possible mistake: forgotten $pi i$ in $dz$.
    $endgroup$
    – Martín-Blas Pérez Pinilla
    2 days ago










  • $begingroup$
    Couple things: 1) when making a post like this please show your work 2) You say the function is not holomorphic "there" - just to be clear, it's holomorphic on the circle you're integrating on, just not inside the circle
    $endgroup$
    – Brevan Ellefsen
    2 days ago











  • $begingroup$
    @BrevanEllefsen why do you say it's holomorphic on the circle $|z|=pi$ can you show me how you got this? Using Cauchy Riemann equation in polar coordinates it seems it's holomorphic only on the circle $|z|=1$
    $endgroup$
    – Dac0
    2 days ago











  • $begingroup$
    @Dac0 your function is a scalar multiple of $int_D z^-1$ where $D$ is the circle of radius $pi$. The integrand is holomorphic everywhere but at the origin, which does not lie on your circle (it's inside it... In the exact middle)
    $endgroup$
    – Brevan Ellefsen
    2 days ago










  • $begingroup$
    @BrevanEllefsen I used for the Cauchy Riemann equation $fracpartial fpartial r=-fracirfracpartial fpartialtheta$ and then you have $fracpartial fpartial r=-e^-re^-itheta$ and $fracpartial fpartialtheta=-fracire^-re^-itheta$ so should be $r=1$. What am I doing wrong?
    $endgroup$
    – Dac0
    2 days ago








1




1




$begingroup$
Possible mistake: forgotten $pi i$ in $dz$.
$endgroup$
– Martín-Blas Pérez Pinilla
2 days ago




$begingroup$
Possible mistake: forgotten $pi i$ in $dz$.
$endgroup$
– Martín-Blas Pérez Pinilla
2 days ago












$begingroup$
Couple things: 1) when making a post like this please show your work 2) You say the function is not holomorphic "there" - just to be clear, it's holomorphic on the circle you're integrating on, just not inside the circle
$endgroup$
– Brevan Ellefsen
2 days ago





$begingroup$
Couple things: 1) when making a post like this please show your work 2) You say the function is not holomorphic "there" - just to be clear, it's holomorphic on the circle you're integrating on, just not inside the circle
$endgroup$
– Brevan Ellefsen
2 days ago













$begingroup$
@BrevanEllefsen why do you say it's holomorphic on the circle $|z|=pi$ can you show me how you got this? Using Cauchy Riemann equation in polar coordinates it seems it's holomorphic only on the circle $|z|=1$
$endgroup$
– Dac0
2 days ago





$begingroup$
@BrevanEllefsen why do you say it's holomorphic on the circle $|z|=pi$ can you show me how you got this? Using Cauchy Riemann equation in polar coordinates it seems it's holomorphic only on the circle $|z|=1$
$endgroup$
– Dac0
2 days ago













$begingroup$
@Dac0 your function is a scalar multiple of $int_D z^-1$ where $D$ is the circle of radius $pi$. The integrand is holomorphic everywhere but at the origin, which does not lie on your circle (it's inside it... In the exact middle)
$endgroup$
– Brevan Ellefsen
2 days ago




$begingroup$
@Dac0 your function is a scalar multiple of $int_D z^-1$ where $D$ is the circle of radius $pi$. The integrand is holomorphic everywhere but at the origin, which does not lie on your circle (it's inside it... In the exact middle)
$endgroup$
– Brevan Ellefsen
2 days ago












$begingroup$
@BrevanEllefsen I used for the Cauchy Riemann equation $fracpartial fpartial r=-fracirfracpartial fpartialtheta$ and then you have $fracpartial fpartial r=-e^-re^-itheta$ and $fracpartial fpartialtheta=-fracire^-re^-itheta$ so should be $r=1$. What am I doing wrong?
$endgroup$
– Dac0
2 days ago





$begingroup$
@BrevanEllefsen I used for the Cauchy Riemann equation $fracpartial fpartial r=-fracirfracpartial fpartialtheta$ and then you have $fracpartial fpartial r=-e^-re^-itheta$ and $fracpartial fpartialtheta=-fracire^-re^-itheta$ so should be $r=1$. What am I doing wrong?
$endgroup$
– Dac0
2 days ago











2 Answers
2






active

oldest

votes


















5












$begingroup$

Let be $z = pi e^itheta, thetain[0,2pi]$:
$$
int_zfrace^-zdz =
int_0^2pifracpi e^-pipi e^ithetapi i e^itheta = 2pi^2 i e^-pi.
$$

But... Cauchy formula can be used:
$$
int_zfrace^-zdz =
int_zfracpi e^-pizdz = 2pi^2 i e^-pi.
$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    thank you, was what I was looking for :)
    $endgroup$
    – Dac0
    2 days ago


















7












$begingroup$

If $gamma(t)=pi e^it$ ($tin[0,2pi]$), thenbeginalignint_lvert zrvert=pifraclvert zrvert e^-lvert zrvertz,mathrm dz&=int_0^2pifracbigllvertgamma(t)bigrrvert e^-lvertgamma(t)rvertgamma(t)gamma'(t),mathrm dt\&=int_0^2pipi e^-pii,mathrm dt\&=2pi^2ie^-pi.endalign






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169258%2fevaluating-the-integral-int-leftz-right-pi-frac-leftz-righte-left%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    Let be $z = pi e^itheta, thetain[0,2pi]$:
    $$
    int_zfrace^-zdz =
    int_0^2pifracpi e^-pipi e^ithetapi i e^itheta = 2pi^2 i e^-pi.
    $$

    But... Cauchy formula can be used:
    $$
    int_zfrace^-zdz =
    int_zfracpi e^-pizdz = 2pi^2 i e^-pi.
    $$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      thank you, was what I was looking for :)
      $endgroup$
      – Dac0
      2 days ago















    5












    $begingroup$

    Let be $z = pi e^itheta, thetain[0,2pi]$:
    $$
    int_zfrace^-zdz =
    int_0^2pifracpi e^-pipi e^ithetapi i e^itheta = 2pi^2 i e^-pi.
    $$

    But... Cauchy formula can be used:
    $$
    int_zfrace^-zdz =
    int_zfracpi e^-pizdz = 2pi^2 i e^-pi.
    $$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      thank you, was what I was looking for :)
      $endgroup$
      – Dac0
      2 days ago













    5












    5








    5





    $begingroup$

    Let be $z = pi e^itheta, thetain[0,2pi]$:
    $$
    int_zfrace^-zdz =
    int_0^2pifracpi e^-pipi e^ithetapi i e^itheta = 2pi^2 i e^-pi.
    $$

    But... Cauchy formula can be used:
    $$
    int_zfrace^-zdz =
    int_zfracpi e^-pizdz = 2pi^2 i e^-pi.
    $$






    share|cite|improve this answer











    $endgroup$



    Let be $z = pi e^itheta, thetain[0,2pi]$:
    $$
    int_zfrace^-zdz =
    int_0^2pifracpi e^-pipi e^ithetapi i e^itheta = 2pi^2 i e^-pi.
    $$

    But... Cauchy formula can be used:
    $$
    int_zfrace^-zdz =
    int_zfracpi e^-pizdz = 2pi^2 i e^-pi.
    $$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 2 days ago

























    answered 2 days ago









    Martín-Blas Pérez PinillaMartín-Blas Pérez Pinilla

    35k42971




    35k42971











    • $begingroup$
      thank you, was what I was looking for :)
      $endgroup$
      – Dac0
      2 days ago
















    • $begingroup$
      thank you, was what I was looking for :)
      $endgroup$
      – Dac0
      2 days ago















    $begingroup$
    thank you, was what I was looking for :)
    $endgroup$
    – Dac0
    2 days ago




    $begingroup$
    thank you, was what I was looking for :)
    $endgroup$
    – Dac0
    2 days ago











    7












    $begingroup$

    If $gamma(t)=pi e^it$ ($tin[0,2pi]$), thenbeginalignint_lvert zrvert=pifraclvert zrvert e^-lvert zrvertz,mathrm dz&=int_0^2pifracbigllvertgamma(t)bigrrvert e^-lvertgamma(t)rvertgamma(t)gamma'(t),mathrm dt\&=int_0^2pipi e^-pii,mathrm dt\&=2pi^2ie^-pi.endalign






    share|cite|improve this answer











    $endgroup$

















      7












      $begingroup$

      If $gamma(t)=pi e^it$ ($tin[0,2pi]$), thenbeginalignint_lvert zrvert=pifraclvert zrvert e^-lvert zrvertz,mathrm dz&=int_0^2pifracbigllvertgamma(t)bigrrvert e^-lvertgamma(t)rvertgamma(t)gamma'(t),mathrm dt\&=int_0^2pipi e^-pii,mathrm dt\&=2pi^2ie^-pi.endalign






      share|cite|improve this answer











      $endgroup$















        7












        7








        7





        $begingroup$

        If $gamma(t)=pi e^it$ ($tin[0,2pi]$), thenbeginalignint_lvert zrvert=pifraclvert zrvert e^-lvert zrvertz,mathrm dz&=int_0^2pifracbigllvertgamma(t)bigrrvert e^-lvertgamma(t)rvertgamma(t)gamma'(t),mathrm dt\&=int_0^2pipi e^-pii,mathrm dt\&=2pi^2ie^-pi.endalign






        share|cite|improve this answer











        $endgroup$



        If $gamma(t)=pi e^it$ ($tin[0,2pi]$), thenbeginalignint_lvert zrvert=pifraclvert zrvert e^-lvert zrvertz,mathrm dz&=int_0^2pifracbigllvertgamma(t)bigrrvert e^-lvertgamma(t)rvertgamma(t)gamma'(t),mathrm dt\&=int_0^2pipi e^-pii,mathrm dt\&=2pi^2ie^-pi.endalign







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 2 days ago

























        answered 2 days ago









        José Carlos SantosJosé Carlos Santos

        172k23132240




        172k23132240



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169258%2fevaluating-the-integral-int-leftz-right-pi-frac-leftz-righte-left%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Sum ergo cogito? 1 nng

            三茅街道4182Guuntc Dn precexpngmageondP