Is this relativistic mass? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Does relativistic mass exhibit gravitiational effects?Would an object lose physical mass if it accelerated to a relativistic speed (would an object burn it's own mass)?If rest mass does not change with $v$ then why is infinite energy required to accelerate an object to the speed of light?Will objects heat up and become hidden at relativistic speed?Can relativistic mass be treated as rest mass?Questions on MassProper mass and space-time wrap questionGravitational Field of a Photon compared to that of Massive MatterDoes the mass of object really increase?Are relativistic momentum and relativistic mass conserved in special relativity?

How did the crowd guess the pentatonic scale in Bobby McFerrin's presentation?

Do working physicists consider Newtonian mechanics to be "falsified"?

Using dividends to reduce short term capital gains?

Am I ethically obligated to go into work on an off day if the reason is sudden?

Can I visit the Trinity College (Cambridge) library and see some of their rare books

Why did Peik Lin say, "I'm not an animal"?

Did the UK government pay "millions and millions of dollars" to try to snag Julian Assange?

How do I design a circuit to convert a 100 mV and 50 Hz sine wave to a square wave?

How do you keep chess fun when your opponent constantly beats you?

Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?

Is this wall load bearing? Blueprints and photos attached

What does Linus Torvalds mean when he says that Git "never ever" tracks a file?

Can the Right Ascension and Argument of Perigee of a spacecraft's orbit keep varying by themselves with time?

Keeping a retro style to sci-fi spaceships?

How to make Illustrator type tool selection automatically adapt with text length

How did passengers keep warm on sail ships?

My body leaves; my core can stay

For what reasons would an animal species NOT cross a *horizontal* land bridge?

What information about me do stores get via my credit card?

Circular reasoning in L'Hopital's rule

How many cones with angle theta can I pack into the unit sphere?

Accepted by European university, rejected by all American ones I applied to? Possible reasons?

Does Parliament hold absolute power in the UK?

Example of compact Riemannian manifold with only one geodesic.



Is this relativistic mass?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Does relativistic mass exhibit gravitiational effects?Would an object lose physical mass if it accelerated to a relativistic speed (would an object burn it's own mass)?If rest mass does not change with $v$ then why is infinite energy required to accelerate an object to the speed of light?Will objects heat up and become hidden at relativistic speed?Can relativistic mass be treated as rest mass?Questions on MassProper mass and space-time wrap questionGravitational Field of a Photon compared to that of Massive MatterDoes the mass of object really increase?Are relativistic momentum and relativistic mass conserved in special relativity?










4












$begingroup$


I have seen in a lot of places in here clearly stating that relativistic mass is outdated, that we can make do just fine with the concept of invariant mass,etc. But I've also seen people saying that a hotter object is heavier than a colder object. Where they say that the internal energy of the constituent atoms contribute to the mass of the object. This confuses me. Doesn't relativistic mass imply that I should observe your mass to increase as your velocity increases? Doesn't an increase in internal energy mean an increase in the constituent atom's velocity?










share|cite|improve this question











$endgroup$
















    4












    $begingroup$


    I have seen in a lot of places in here clearly stating that relativistic mass is outdated, that we can make do just fine with the concept of invariant mass,etc. But I've also seen people saying that a hotter object is heavier than a colder object. Where they say that the internal energy of the constituent atoms contribute to the mass of the object. This confuses me. Doesn't relativistic mass imply that I should observe your mass to increase as your velocity increases? Doesn't an increase in internal energy mean an increase in the constituent atom's velocity?










    share|cite|improve this question











    $endgroup$














      4












      4








      4


      1



      $begingroup$


      I have seen in a lot of places in here clearly stating that relativistic mass is outdated, that we can make do just fine with the concept of invariant mass,etc. But I've also seen people saying that a hotter object is heavier than a colder object. Where they say that the internal energy of the constituent atoms contribute to the mass of the object. This confuses me. Doesn't relativistic mass imply that I should observe your mass to increase as your velocity increases? Doesn't an increase in internal energy mean an increase in the constituent atom's velocity?










      share|cite|improve this question











      $endgroup$




      I have seen in a lot of places in here clearly stating that relativistic mass is outdated, that we can make do just fine with the concept of invariant mass,etc. But I've also seen people saying that a hotter object is heavier than a colder object. Where they say that the internal energy of the constituent atoms contribute to the mass of the object. This confuses me. Doesn't relativistic mass imply that I should observe your mass to increase as your velocity increases? Doesn't an increase in internal energy mean an increase in the constituent atom's velocity?







      special-relativity mass inertial-frames mass-energy






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Apr 9 at 3:10









      Qmechanic

      108k122001244




      108k122001244










      asked Apr 8 at 20:32









      Achilles' AdvisorAchilles' Advisor

      608




      608




















          2 Answers
          2






          active

          oldest

          votes


















          9












          $begingroup$


          But I've also seen people saying that a hotter object is heavier than a colder object. Where they say that the internal energy of the constituent atoms contribute to the mass of the object.




          Yes, and this is not in contradiction with the convention of invariant mass. Mass is defined by the identity $m^2=E^2-p^2$ (in units where $c=1$), which implies that it isn't additive. So say I have two electrons, each with mass $m$. If one is moving to the right at $0.9c$, and the other is moving to the left at $-0.9c$, then the mass of the whole system is greater than $2m$. However, each electron individually still has mass $m$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Okay thanks and does relaivistic mass add linearly?
            $endgroup$
            – Achilles' Advisor
            Apr 9 at 17:21






          • 1




            $begingroup$
            No, that's what I mean by saying that it isn't additive.
            $endgroup$
            – Ben Crowell
            yesterday










          • $begingroup$
            But you said that for invariant mass. I asked if it was the same case for relativistic mass.
            $endgroup$
            – Achilles' Advisor
            16 hours ago


















          1












          $begingroup$


          Doesn't relativistic mass imply that I should observe your mass to increase as your velocity increases?




          Outdated does not mean wrong. It means confusing, since we have much better tools to study the microcosm of atoms, since it was realized that special relativity in the motion of particles is completely and cleanly described by defining the relativistic four vectors, which obey vector equations.



          Here is the energy momentum four vector :



          E,pinvarmass



          and to the right the definition of the invariant mass:




          The length of this 4-vector is the rest energy of the particle. The invariance is associated with the fact that the rest mass is the same in any inertial frame of reference.




          As with the everyday length of vectors, lengths are not addivive, one has to use vector addition, in the special relativity case as defined on the right.




          Doesn't an increase in internal energy mean an increase in the constituent atom's velocity?




          Note what you said:




          Doesn't relativistic mass imply that I should observe your mass to increase as your velocity increases?




          bold mine.



          When you hold a solid, is the solid moving with respect to your observation? The statement holds mathematically for each individual electron and atom with respect to the other, but statistically there is no motion that an external observer can measure.
          The four vector formalism simplifies this. The addition of all the four vectors in a solid will give the total four vector whose length is the mass you can measure in the laboratory. Hotter items have higher momenta and the total addition of four vectors will give higher invariant mass for a hot object than it has when cold.






          share|cite|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "151"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471382%2fis-this-relativistic-mass%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            9












            $begingroup$


            But I've also seen people saying that a hotter object is heavier than a colder object. Where they say that the internal energy of the constituent atoms contribute to the mass of the object.




            Yes, and this is not in contradiction with the convention of invariant mass. Mass is defined by the identity $m^2=E^2-p^2$ (in units where $c=1$), which implies that it isn't additive. So say I have two electrons, each with mass $m$. If one is moving to the right at $0.9c$, and the other is moving to the left at $-0.9c$, then the mass of the whole system is greater than $2m$. However, each electron individually still has mass $m$.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Okay thanks and does relaivistic mass add linearly?
              $endgroup$
              – Achilles' Advisor
              Apr 9 at 17:21






            • 1




              $begingroup$
              No, that's what I mean by saying that it isn't additive.
              $endgroup$
              – Ben Crowell
              yesterday










            • $begingroup$
              But you said that for invariant mass. I asked if it was the same case for relativistic mass.
              $endgroup$
              – Achilles' Advisor
              16 hours ago















            9












            $begingroup$


            But I've also seen people saying that a hotter object is heavier than a colder object. Where they say that the internal energy of the constituent atoms contribute to the mass of the object.




            Yes, and this is not in contradiction with the convention of invariant mass. Mass is defined by the identity $m^2=E^2-p^2$ (in units where $c=1$), which implies that it isn't additive. So say I have two electrons, each with mass $m$. If one is moving to the right at $0.9c$, and the other is moving to the left at $-0.9c$, then the mass of the whole system is greater than $2m$. However, each electron individually still has mass $m$.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Okay thanks and does relaivistic mass add linearly?
              $endgroup$
              – Achilles' Advisor
              Apr 9 at 17:21






            • 1




              $begingroup$
              No, that's what I mean by saying that it isn't additive.
              $endgroup$
              – Ben Crowell
              yesterday










            • $begingroup$
              But you said that for invariant mass. I asked if it was the same case for relativistic mass.
              $endgroup$
              – Achilles' Advisor
              16 hours ago













            9












            9








            9





            $begingroup$


            But I've also seen people saying that a hotter object is heavier than a colder object. Where they say that the internal energy of the constituent atoms contribute to the mass of the object.




            Yes, and this is not in contradiction with the convention of invariant mass. Mass is defined by the identity $m^2=E^2-p^2$ (in units where $c=1$), which implies that it isn't additive. So say I have two electrons, each with mass $m$. If one is moving to the right at $0.9c$, and the other is moving to the left at $-0.9c$, then the mass of the whole system is greater than $2m$. However, each electron individually still has mass $m$.






            share|cite|improve this answer









            $endgroup$




            But I've also seen people saying that a hotter object is heavier than a colder object. Where they say that the internal energy of the constituent atoms contribute to the mass of the object.




            Yes, and this is not in contradiction with the convention of invariant mass. Mass is defined by the identity $m^2=E^2-p^2$ (in units where $c=1$), which implies that it isn't additive. So say I have two electrons, each with mass $m$. If one is moving to the right at $0.9c$, and the other is moving to the left at $-0.9c$, then the mass of the whole system is greater than $2m$. However, each electron individually still has mass $m$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Apr 8 at 21:07









            Ben CrowellBen Crowell

            54.1k6165313




            54.1k6165313











            • $begingroup$
              Okay thanks and does relaivistic mass add linearly?
              $endgroup$
              – Achilles' Advisor
              Apr 9 at 17:21






            • 1




              $begingroup$
              No, that's what I mean by saying that it isn't additive.
              $endgroup$
              – Ben Crowell
              yesterday










            • $begingroup$
              But you said that for invariant mass. I asked if it was the same case for relativistic mass.
              $endgroup$
              – Achilles' Advisor
              16 hours ago
















            • $begingroup$
              Okay thanks and does relaivistic mass add linearly?
              $endgroup$
              – Achilles' Advisor
              Apr 9 at 17:21






            • 1




              $begingroup$
              No, that's what I mean by saying that it isn't additive.
              $endgroup$
              – Ben Crowell
              yesterday










            • $begingroup$
              But you said that for invariant mass. I asked if it was the same case for relativistic mass.
              $endgroup$
              – Achilles' Advisor
              16 hours ago















            $begingroup$
            Okay thanks and does relaivistic mass add linearly?
            $endgroup$
            – Achilles' Advisor
            Apr 9 at 17:21




            $begingroup$
            Okay thanks and does relaivistic mass add linearly?
            $endgroup$
            – Achilles' Advisor
            Apr 9 at 17:21




            1




            1




            $begingroup$
            No, that's what I mean by saying that it isn't additive.
            $endgroup$
            – Ben Crowell
            yesterday




            $begingroup$
            No, that's what I mean by saying that it isn't additive.
            $endgroup$
            – Ben Crowell
            yesterday












            $begingroup$
            But you said that for invariant mass. I asked if it was the same case for relativistic mass.
            $endgroup$
            – Achilles' Advisor
            16 hours ago




            $begingroup$
            But you said that for invariant mass. I asked if it was the same case for relativistic mass.
            $endgroup$
            – Achilles' Advisor
            16 hours ago











            1












            $begingroup$


            Doesn't relativistic mass imply that I should observe your mass to increase as your velocity increases?




            Outdated does not mean wrong. It means confusing, since we have much better tools to study the microcosm of atoms, since it was realized that special relativity in the motion of particles is completely and cleanly described by defining the relativistic four vectors, which obey vector equations.



            Here is the energy momentum four vector :



            E,pinvarmass



            and to the right the definition of the invariant mass:




            The length of this 4-vector is the rest energy of the particle. The invariance is associated with the fact that the rest mass is the same in any inertial frame of reference.




            As with the everyday length of vectors, lengths are not addivive, one has to use vector addition, in the special relativity case as defined on the right.




            Doesn't an increase in internal energy mean an increase in the constituent atom's velocity?




            Note what you said:




            Doesn't relativistic mass imply that I should observe your mass to increase as your velocity increases?




            bold mine.



            When you hold a solid, is the solid moving with respect to your observation? The statement holds mathematically for each individual electron and atom with respect to the other, but statistically there is no motion that an external observer can measure.
            The four vector formalism simplifies this. The addition of all the four vectors in a solid will give the total four vector whose length is the mass you can measure in the laboratory. Hotter items have higher momenta and the total addition of four vectors will give higher invariant mass for a hot object than it has when cold.






            share|cite|improve this answer









            $endgroup$

















              1












              $begingroup$


              Doesn't relativistic mass imply that I should observe your mass to increase as your velocity increases?




              Outdated does not mean wrong. It means confusing, since we have much better tools to study the microcosm of atoms, since it was realized that special relativity in the motion of particles is completely and cleanly described by defining the relativistic four vectors, which obey vector equations.



              Here is the energy momentum four vector :



              E,pinvarmass



              and to the right the definition of the invariant mass:




              The length of this 4-vector is the rest energy of the particle. The invariance is associated with the fact that the rest mass is the same in any inertial frame of reference.




              As with the everyday length of vectors, lengths are not addivive, one has to use vector addition, in the special relativity case as defined on the right.




              Doesn't an increase in internal energy mean an increase in the constituent atom's velocity?




              Note what you said:




              Doesn't relativistic mass imply that I should observe your mass to increase as your velocity increases?




              bold mine.



              When you hold a solid, is the solid moving with respect to your observation? The statement holds mathematically for each individual electron and atom with respect to the other, but statistically there is no motion that an external observer can measure.
              The four vector formalism simplifies this. The addition of all the four vectors in a solid will give the total four vector whose length is the mass you can measure in the laboratory. Hotter items have higher momenta and the total addition of four vectors will give higher invariant mass for a hot object than it has when cold.






              share|cite|improve this answer









              $endgroup$















                1












                1








                1





                $begingroup$


                Doesn't relativistic mass imply that I should observe your mass to increase as your velocity increases?




                Outdated does not mean wrong. It means confusing, since we have much better tools to study the microcosm of atoms, since it was realized that special relativity in the motion of particles is completely and cleanly described by defining the relativistic four vectors, which obey vector equations.



                Here is the energy momentum four vector :



                E,pinvarmass



                and to the right the definition of the invariant mass:




                The length of this 4-vector is the rest energy of the particle. The invariance is associated with the fact that the rest mass is the same in any inertial frame of reference.




                As with the everyday length of vectors, lengths are not addivive, one has to use vector addition, in the special relativity case as defined on the right.




                Doesn't an increase in internal energy mean an increase in the constituent atom's velocity?




                Note what you said:




                Doesn't relativistic mass imply that I should observe your mass to increase as your velocity increases?




                bold mine.



                When you hold a solid, is the solid moving with respect to your observation? The statement holds mathematically for each individual electron and atom with respect to the other, but statistically there is no motion that an external observer can measure.
                The four vector formalism simplifies this. The addition of all the four vectors in a solid will give the total four vector whose length is the mass you can measure in the laboratory. Hotter items have higher momenta and the total addition of four vectors will give higher invariant mass for a hot object than it has when cold.






                share|cite|improve this answer









                $endgroup$




                Doesn't relativistic mass imply that I should observe your mass to increase as your velocity increases?




                Outdated does not mean wrong. It means confusing, since we have much better tools to study the microcosm of atoms, since it was realized that special relativity in the motion of particles is completely and cleanly described by defining the relativistic four vectors, which obey vector equations.



                Here is the energy momentum four vector :



                E,pinvarmass



                and to the right the definition of the invariant mass:




                The length of this 4-vector is the rest energy of the particle. The invariance is associated with the fact that the rest mass is the same in any inertial frame of reference.




                As with the everyday length of vectors, lengths are not addivive, one has to use vector addition, in the special relativity case as defined on the right.




                Doesn't an increase in internal energy mean an increase in the constituent atom's velocity?




                Note what you said:




                Doesn't relativistic mass imply that I should observe your mass to increase as your velocity increases?




                bold mine.



                When you hold a solid, is the solid moving with respect to your observation? The statement holds mathematically for each individual electron and atom with respect to the other, but statistically there is no motion that an external observer can measure.
                The four vector formalism simplifies this. The addition of all the four vectors in a solid will give the total four vector whose length is the mass you can measure in the laboratory. Hotter items have higher momenta and the total addition of four vectors will give higher invariant mass for a hot object than it has when cold.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Apr 9 at 4:03









                anna vanna v

                162k8153455




                162k8153455



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Physics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471382%2fis-this-relativistic-mass%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Sum ergo cogito? 1 nng

                    三茅街道4182Guuntc Dn precexpngmageondP