Facing a paradox: Earnshaw's theorem in one dimensionDoes this example contradict Earnshaw's theorem in one dimension?Classify equilibrium points and find bifurcation points of a non-linear dynamic systemEarnshaw's theorem and springsEarnshaw's theorem for extended conducting bodiesPotential due to charge over infinite grounded plane conductor using the method of imagesRelation between electric field and dipole momentEarnshaw's theorm and Effective potentialDielectric liquid sucked up between two cylinders with a voltage differenceElectrostatics: Induced Boundary Dipole LayerWhy do we assume simply connected domains and continuously differentiable fields in electromagnetism theory?Does this example contradict Earnshaw's theorem in one dimension?
What typically incentivizes a professor to change jobs to a lower ranking university?
How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?
Is there a minimum number of transactions in a block?
Are tax years 2016 & 2017 back taxes deductible for tax year 2018?
whey we use polarized capacitor?
Chess with symmetric move-square
Japan - Plan around max visa duration
If Manufacturer spice model and Datasheet give different values which should I use?
N.B. ligature in Latex
Patience, young "Padovan"
What is the offset in a seaplane's hull?
Simulate Bitwise Cyclic Tag
Example of a relative pronoun
Schwarzchild Radius of the Universe
least quadratic residue under GRH: an EXPLICIT bound
What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?
DOS, create pipe for stdin/stdout of command.com(or 4dos.com) in C or Batch?
How is this relation reflexive?
A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?
declaring a variable twice in IIFE
Prevent a directory in /tmp from being deleted
A function which translates a sentence to title-case
How can I fix this gap between bookcases I made?
Can you lasso down a wizard who is using the Levitate spell?
Facing a paradox: Earnshaw's theorem in one dimension
Does this example contradict Earnshaw's theorem in one dimension?Classify equilibrium points and find bifurcation points of a non-linear dynamic systemEarnshaw's theorem and springsEarnshaw's theorem for extended conducting bodiesPotential due to charge over infinite grounded plane conductor using the method of imagesRelation between electric field and dipole momentEarnshaw's theorm and Effective potentialDielectric liquid sucked up between two cylinders with a voltage differenceElectrostatics: Induced Boundary Dipole LayerWhy do we assume simply connected domains and continuously differentiable fields in electromagnetism theory?Does this example contradict Earnshaw's theorem in one dimension?
$begingroup$
Consider a one-dimensional situation on a straight line (say, $x$-axis). Let a charge of magnitude $q$ be located at $x=x_0$, the potential satisfies the Poisson's equation $$fracd^2Vdx^2=-fracrho(x)epsilon_0=-fracqdelta(x-x_0)epsilon_0.$$ If $q>0$, $V^primeprime(x_0)<0$, and if $q<0$, $V^primeprime(x_0)>0$. Therefore, it appears that the potential $V$ does have a minimum at $x=x_0$, for $q<0$. Does this imply that $x=x_0$ is a point of stable equilibrium? I must be missing something because this appears to violate Earnshaw's theorem (or it doesn't)?
electrostatics mathematical-physics potential classical-electrodynamics equilibrium
$endgroup$
add a comment |
$begingroup$
Consider a one-dimensional situation on a straight line (say, $x$-axis). Let a charge of magnitude $q$ be located at $x=x_0$, the potential satisfies the Poisson's equation $$fracd^2Vdx^2=-fracrho(x)epsilon_0=-fracqdelta(x-x_0)epsilon_0.$$ If $q>0$, $V^primeprime(x_0)<0$, and if $q<0$, $V^primeprime(x_0)>0$. Therefore, it appears that the potential $V$ does have a minimum at $x=x_0$, for $q<0$. Does this imply that $x=x_0$ is a point of stable equilibrium? I must be missing something because this appears to violate Earnshaw's theorem (or it doesn't)?
electrostatics mathematical-physics potential classical-electrodynamics equilibrium
$endgroup$
add a comment |
$begingroup$
Consider a one-dimensional situation on a straight line (say, $x$-axis). Let a charge of magnitude $q$ be located at $x=x_0$, the potential satisfies the Poisson's equation $$fracd^2Vdx^2=-fracrho(x)epsilon_0=-fracqdelta(x-x_0)epsilon_0.$$ If $q>0$, $V^primeprime(x_0)<0$, and if $q<0$, $V^primeprime(x_0)>0$. Therefore, it appears that the potential $V$ does have a minimum at $x=x_0$, for $q<0$. Does this imply that $x=x_0$ is a point of stable equilibrium? I must be missing something because this appears to violate Earnshaw's theorem (or it doesn't)?
electrostatics mathematical-physics potential classical-electrodynamics equilibrium
$endgroup$
Consider a one-dimensional situation on a straight line (say, $x$-axis). Let a charge of magnitude $q$ be located at $x=x_0$, the potential satisfies the Poisson's equation $$fracd^2Vdx^2=-fracrho(x)epsilon_0=-fracqdelta(x-x_0)epsilon_0.$$ If $q>0$, $V^primeprime(x_0)<0$, and if $q<0$, $V^primeprime(x_0)>0$. Therefore, it appears that the potential $V$ does have a minimum at $x=x_0$, for $q<0$. Does this imply that $x=x_0$ is a point of stable equilibrium? I must be missing something because this appears to violate Earnshaw's theorem (or it doesn't)?
electrostatics mathematical-physics potential classical-electrodynamics equilibrium
electrostatics mathematical-physics potential classical-electrodynamics equilibrium
edited Apr 4 at 16:44
Aaron Stevens
14.9k42453
14.9k42453
asked Apr 4 at 13:53
SRSSRS
6,746434125
6,746434125
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Your example does not contradict Earnshaw's theorem for electrostatics, because it rules out stable equilibrium in a region without charge, possibly containing fields made by charges outside that region. Here you're doing the exact opposite, looking at the only point in your situation with charge.
$endgroup$
$begingroup$
Yes. I meant Earnshaw's theorem. Thanks. Does it mean that there must be an Earnshaw's theorem for Newtonian gravitation? Because in a massless region, again one has $V^primeprime(x)=0$?
$endgroup$
– SRS
Apr 4 at 14:57
$begingroup$
@SRS Yes, that's true.
$endgroup$
– knzhou
Apr 4 at 14:58
$begingroup$
I am not yet totally comfortable with this. If you have a charge at some point $x=x_0$, is it not correct to look at the behaviour of the potential at that point? @knzhou
$endgroup$
– SRS
Apr 4 at 15:37
$begingroup$
@SRS The potential at a point charge is not defined (or you could say infinite)
$endgroup$
– Aaron Stevens
Apr 4 at 16:33
$begingroup$
I have to think more about it and I'll get back.
$endgroup$
– SRS
Apr 4 at 16:37
|
show 1 more comment
$begingroup$
So technically $V''(x_0)$ doesn't have an actual value, since $delta(x-x_0)toinfty$ as $xto x_0$. However, if you understand the Dirac delta distribution to be a limit of a function whose peak "gets narrower" with its integral remaining constant, then this is fine and you could say there is a minimum at $x_0$ for $q<0$
This can be more easily understood by just thinking about the motion of a positive charge in this potential. It will move towards the negative charge, i.e. towards the minimum of the potential.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470522%2ffacing-a-paradox-earnshaws-theorem-in-one-dimension%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your example does not contradict Earnshaw's theorem for electrostatics, because it rules out stable equilibrium in a region without charge, possibly containing fields made by charges outside that region. Here you're doing the exact opposite, looking at the only point in your situation with charge.
$endgroup$
$begingroup$
Yes. I meant Earnshaw's theorem. Thanks. Does it mean that there must be an Earnshaw's theorem for Newtonian gravitation? Because in a massless region, again one has $V^primeprime(x)=0$?
$endgroup$
– SRS
Apr 4 at 14:57
$begingroup$
@SRS Yes, that's true.
$endgroup$
– knzhou
Apr 4 at 14:58
$begingroup$
I am not yet totally comfortable with this. If you have a charge at some point $x=x_0$, is it not correct to look at the behaviour of the potential at that point? @knzhou
$endgroup$
– SRS
Apr 4 at 15:37
$begingroup$
@SRS The potential at a point charge is not defined (or you could say infinite)
$endgroup$
– Aaron Stevens
Apr 4 at 16:33
$begingroup$
I have to think more about it and I'll get back.
$endgroup$
– SRS
Apr 4 at 16:37
|
show 1 more comment
$begingroup$
Your example does not contradict Earnshaw's theorem for electrostatics, because it rules out stable equilibrium in a region without charge, possibly containing fields made by charges outside that region. Here you're doing the exact opposite, looking at the only point in your situation with charge.
$endgroup$
$begingroup$
Yes. I meant Earnshaw's theorem. Thanks. Does it mean that there must be an Earnshaw's theorem for Newtonian gravitation? Because in a massless region, again one has $V^primeprime(x)=0$?
$endgroup$
– SRS
Apr 4 at 14:57
$begingroup$
@SRS Yes, that's true.
$endgroup$
– knzhou
Apr 4 at 14:58
$begingroup$
I am not yet totally comfortable with this. If you have a charge at some point $x=x_0$, is it not correct to look at the behaviour of the potential at that point? @knzhou
$endgroup$
– SRS
Apr 4 at 15:37
$begingroup$
@SRS The potential at a point charge is not defined (or you could say infinite)
$endgroup$
– Aaron Stevens
Apr 4 at 16:33
$begingroup$
I have to think more about it and I'll get back.
$endgroup$
– SRS
Apr 4 at 16:37
|
show 1 more comment
$begingroup$
Your example does not contradict Earnshaw's theorem for electrostatics, because it rules out stable equilibrium in a region without charge, possibly containing fields made by charges outside that region. Here you're doing the exact opposite, looking at the only point in your situation with charge.
$endgroup$
Your example does not contradict Earnshaw's theorem for electrostatics, because it rules out stable equilibrium in a region without charge, possibly containing fields made by charges outside that region. Here you're doing the exact opposite, looking at the only point in your situation with charge.
edited Apr 4 at 16:44
Aaron Stevens
14.9k42453
14.9k42453
answered Apr 4 at 13:58
knzhouknzhou
46.7k11126224
46.7k11126224
$begingroup$
Yes. I meant Earnshaw's theorem. Thanks. Does it mean that there must be an Earnshaw's theorem for Newtonian gravitation? Because in a massless region, again one has $V^primeprime(x)=0$?
$endgroup$
– SRS
Apr 4 at 14:57
$begingroup$
@SRS Yes, that's true.
$endgroup$
– knzhou
Apr 4 at 14:58
$begingroup$
I am not yet totally comfortable with this. If you have a charge at some point $x=x_0$, is it not correct to look at the behaviour of the potential at that point? @knzhou
$endgroup$
– SRS
Apr 4 at 15:37
$begingroup$
@SRS The potential at a point charge is not defined (or you could say infinite)
$endgroup$
– Aaron Stevens
Apr 4 at 16:33
$begingroup$
I have to think more about it and I'll get back.
$endgroup$
– SRS
Apr 4 at 16:37
|
show 1 more comment
$begingroup$
Yes. I meant Earnshaw's theorem. Thanks. Does it mean that there must be an Earnshaw's theorem for Newtonian gravitation? Because in a massless region, again one has $V^primeprime(x)=0$?
$endgroup$
– SRS
Apr 4 at 14:57
$begingroup$
@SRS Yes, that's true.
$endgroup$
– knzhou
Apr 4 at 14:58
$begingroup$
I am not yet totally comfortable with this. If you have a charge at some point $x=x_0$, is it not correct to look at the behaviour of the potential at that point? @knzhou
$endgroup$
– SRS
Apr 4 at 15:37
$begingroup$
@SRS The potential at a point charge is not defined (or you could say infinite)
$endgroup$
– Aaron Stevens
Apr 4 at 16:33
$begingroup$
I have to think more about it and I'll get back.
$endgroup$
– SRS
Apr 4 at 16:37
$begingroup$
Yes. I meant Earnshaw's theorem. Thanks. Does it mean that there must be an Earnshaw's theorem for Newtonian gravitation? Because in a massless region, again one has $V^primeprime(x)=0$?
$endgroup$
– SRS
Apr 4 at 14:57
$begingroup$
Yes. I meant Earnshaw's theorem. Thanks. Does it mean that there must be an Earnshaw's theorem for Newtonian gravitation? Because in a massless region, again one has $V^primeprime(x)=0$?
$endgroup$
– SRS
Apr 4 at 14:57
$begingroup$
@SRS Yes, that's true.
$endgroup$
– knzhou
Apr 4 at 14:58
$begingroup$
@SRS Yes, that's true.
$endgroup$
– knzhou
Apr 4 at 14:58
$begingroup$
I am not yet totally comfortable with this. If you have a charge at some point $x=x_0$, is it not correct to look at the behaviour of the potential at that point? @knzhou
$endgroup$
– SRS
Apr 4 at 15:37
$begingroup$
I am not yet totally comfortable with this. If you have a charge at some point $x=x_0$, is it not correct to look at the behaviour of the potential at that point? @knzhou
$endgroup$
– SRS
Apr 4 at 15:37
$begingroup$
@SRS The potential at a point charge is not defined (or you could say infinite)
$endgroup$
– Aaron Stevens
Apr 4 at 16:33
$begingroup$
@SRS The potential at a point charge is not defined (or you could say infinite)
$endgroup$
– Aaron Stevens
Apr 4 at 16:33
$begingroup$
I have to think more about it and I'll get back.
$endgroup$
– SRS
Apr 4 at 16:37
$begingroup$
I have to think more about it and I'll get back.
$endgroup$
– SRS
Apr 4 at 16:37
|
show 1 more comment
$begingroup$
So technically $V''(x_0)$ doesn't have an actual value, since $delta(x-x_0)toinfty$ as $xto x_0$. However, if you understand the Dirac delta distribution to be a limit of a function whose peak "gets narrower" with its integral remaining constant, then this is fine and you could say there is a minimum at $x_0$ for $q<0$
This can be more easily understood by just thinking about the motion of a positive charge in this potential. It will move towards the negative charge, i.e. towards the minimum of the potential.
$endgroup$
add a comment |
$begingroup$
So technically $V''(x_0)$ doesn't have an actual value, since $delta(x-x_0)toinfty$ as $xto x_0$. However, if you understand the Dirac delta distribution to be a limit of a function whose peak "gets narrower" with its integral remaining constant, then this is fine and you could say there is a minimum at $x_0$ for $q<0$
This can be more easily understood by just thinking about the motion of a positive charge in this potential. It will move towards the negative charge, i.e. towards the minimum of the potential.
$endgroup$
add a comment |
$begingroup$
So technically $V''(x_0)$ doesn't have an actual value, since $delta(x-x_0)toinfty$ as $xto x_0$. However, if you understand the Dirac delta distribution to be a limit of a function whose peak "gets narrower" with its integral remaining constant, then this is fine and you could say there is a minimum at $x_0$ for $q<0$
This can be more easily understood by just thinking about the motion of a positive charge in this potential. It will move towards the negative charge, i.e. towards the minimum of the potential.
$endgroup$
So technically $V''(x_0)$ doesn't have an actual value, since $delta(x-x_0)toinfty$ as $xto x_0$. However, if you understand the Dirac delta distribution to be a limit of a function whose peak "gets narrower" with its integral remaining constant, then this is fine and you could say there is a minimum at $x_0$ for $q<0$
This can be more easily understood by just thinking about the motion of a positive charge in this potential. It will move towards the negative charge, i.e. towards the minimum of the potential.
answered Apr 4 at 13:59
Aaron StevensAaron Stevens
14.9k42453
14.9k42453
add a comment |
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470522%2ffacing-a-paradox-earnshaws-theorem-in-one-dimension%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown