Do we need dark matter and dark energy, if the behaviour of the universe in its initial stages was similar to that of the Sun? [on hold] Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Moderator Election Q&A - Question CollectionIs cosmic background radiation dark-matter and/or dark-energy?Spectrum of CMB vs. duration of last scatteringIf we could build a telescope to view the cosmic neutrino background, what would we see?Is entropy absolute (as in absolute temperature)?The infinitely dense point from which the universe allegedly originated - the universe must expand, right?Implications of dark matter imprints on Cosmic Microwave Background Radiation?Dark energy, dark matter and the expansion of the UniverseThermal equilibrium of universeNon-observable universe vs last scattering surfaceWhy is CMB not considered as the edge of the universe?

Time to Settle Down!

What initially awakened the Balrog?

Most bit efficient text communication method?

How would a mousetrap for use in space work?

Do I really need to have a message in a novel to appeal to readers?

Should I use a zero-interest credit card for a large one-time purchase?

Why is it faster to reheat something than it is to cook it?

Is there a kind of relay only consumes power when switching?

Why wasn't DOSKEY integrated with COMMAND.COM?

What are the out-of-universe reasons for the references to Toby Maguire-era Spider-Man in Into the Spider-Verse?

Is it a good idea to use CNN to classify 1D signal?

Drawing without replacement: why is the order of draw irrelevant?

Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?

Is it possible for SQL statements to execute concurrently within a single session in SQL Server?

Disembodied hand growing fangs

Maximum summed subsequences with non-adjacent items

Why weren't discrete x86 CPUs ever used in game hardware?

Do wooden building fires get hotter than 600°C?

How often does castling occur in grandmaster games?

Is it fair for a professor to grade us on the possession of past papers?

Is there hard evidence that the grant peer review system performs significantly better than random?

Using audio cues to encourage good posture

What does it mean that physics no longer uses mechanical models to describe phenomena?

What is the topology associated with the algebras for the ultrafilter monad?



Do we need dark matter and dark energy, if the behaviour of the universe in its initial stages was similar to that of the Sun? [on hold]



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)
2019 Moderator Election Q&A - Question CollectionIs cosmic background radiation dark-matter and/or dark-energy?Spectrum of CMB vs. duration of last scatteringIf we could build a telescope to view the cosmic neutrino background, what would we see?Is entropy absolute (as in absolute temperature)?The infinitely dense point from which the universe allegedly originated - the universe must expand, right?Implications of dark matter imprints on Cosmic Microwave Background Radiation?Dark energy, dark matter and the expansion of the UniverseThermal equilibrium of universeNon-observable universe vs last scattering surfaceWhy is CMB not considered as the edge of the universe?










3












$begingroup$


According to CMBR the universe was a cloud of plasma and was a perfect black body, $380,!000$ years after big bang.



But the Sun in our solar system also is in the state of plasma, thus making it a blackbody. So it is possible that the universe in its initial stage also behaved similarly(I.e. radiated the energy produced as a result of fusion reactions during the recombination epoch beyond the boundary of the plasma). And this is the reason we find find less baryonic matter than we should. Thus making the concept of dark matter irrelevant.










share|cite|improve this question









New contributor




N Pranav Subhraveti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



put on hold as unclear what you're asking by StephenG, A.V.S., Chair, knzhou, Ruslan Apr 15 at 20:11


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.













  • 13




    $begingroup$
    Black bodies DO radiate; dark matter is not black, because it does not radiate. Thermodynamic principles require surfaces which absorb (are black) be good radiators of light, which is a feature absent in dark matter.
    $endgroup$
    – Whit3rd
    Apr 15 at 2:15






  • 5




    $begingroup$
    Dark matter and dark energy are not the same thing
    $endgroup$
    – lcv
    Apr 15 at 3:54






  • 5




    $begingroup$
    I don't see how your conclusions follow from your premises. And that's ignoring that your premises aren't correct. And given how you mix up dark matter and dark energy, not to mention the baryon asymmetry (which has nothing to do with either) I'm quite interested in the way you arrived at your conclusion. How did you come to think that either of these three are in any way related?
    $endgroup$
    – Luaan
    Apr 15 at 7:08






  • 6




    $begingroup$
    You seem to be mixing up dark matter, dark energy, the baryon asymmetry, and blackbodies (which are almost the exact opposite of dark matter) into one big soup -- it's hard to tell what your logic is.
    $endgroup$
    – knzhou
    Apr 15 at 12:46






  • 3




    $begingroup$
    @eromod Uh... no offense, that seems to be a near total reversal of what the video actually says. I know that skepticism of dark matter is very popular in popsci these days, but still.
    $endgroup$
    – knzhou
    Apr 15 at 12:54















3












$begingroup$


According to CMBR the universe was a cloud of plasma and was a perfect black body, $380,!000$ years after big bang.



But the Sun in our solar system also is in the state of plasma, thus making it a blackbody. So it is possible that the universe in its initial stage also behaved similarly(I.e. radiated the energy produced as a result of fusion reactions during the recombination epoch beyond the boundary of the plasma). And this is the reason we find find less baryonic matter than we should. Thus making the concept of dark matter irrelevant.










share|cite|improve this question









New contributor




N Pranav Subhraveti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



put on hold as unclear what you're asking by StephenG, A.V.S., Chair, knzhou, Ruslan Apr 15 at 20:11


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.













  • 13




    $begingroup$
    Black bodies DO radiate; dark matter is not black, because it does not radiate. Thermodynamic principles require surfaces which absorb (are black) be good radiators of light, which is a feature absent in dark matter.
    $endgroup$
    – Whit3rd
    Apr 15 at 2:15






  • 5




    $begingroup$
    Dark matter and dark energy are not the same thing
    $endgroup$
    – lcv
    Apr 15 at 3:54






  • 5




    $begingroup$
    I don't see how your conclusions follow from your premises. And that's ignoring that your premises aren't correct. And given how you mix up dark matter and dark energy, not to mention the baryon asymmetry (which has nothing to do with either) I'm quite interested in the way you arrived at your conclusion. How did you come to think that either of these three are in any way related?
    $endgroup$
    – Luaan
    Apr 15 at 7:08






  • 6




    $begingroup$
    You seem to be mixing up dark matter, dark energy, the baryon asymmetry, and blackbodies (which are almost the exact opposite of dark matter) into one big soup -- it's hard to tell what your logic is.
    $endgroup$
    – knzhou
    Apr 15 at 12:46






  • 3




    $begingroup$
    @eromod Uh... no offense, that seems to be a near total reversal of what the video actually says. I know that skepticism of dark matter is very popular in popsci these days, but still.
    $endgroup$
    – knzhou
    Apr 15 at 12:54













3












3








3





$begingroup$


According to CMBR the universe was a cloud of plasma and was a perfect black body, $380,!000$ years after big bang.



But the Sun in our solar system also is in the state of plasma, thus making it a blackbody. So it is possible that the universe in its initial stage also behaved similarly(I.e. radiated the energy produced as a result of fusion reactions during the recombination epoch beyond the boundary of the plasma). And this is the reason we find find less baryonic matter than we should. Thus making the concept of dark matter irrelevant.










share|cite|improve this question









New contributor




N Pranav Subhraveti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




According to CMBR the universe was a cloud of plasma and was a perfect black body, $380,!000$ years after big bang.



But the Sun in our solar system also is in the state of plasma, thus making it a blackbody. So it is possible that the universe in its initial stage also behaved similarly(I.e. radiated the energy produced as a result of fusion reactions during the recombination epoch beyond the boundary of the plasma). And this is the reason we find find less baryonic matter than we should. Thus making the concept of dark matter irrelevant.







cosmology big-bang dark-matter cosmic-microwave-background baryons






share|cite|improve this question









New contributor




N Pranav Subhraveti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




N Pranav Subhraveti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 2 days ago







N Pranav Subhraveti













New contributor




N Pranav Subhraveti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked Apr 15 at 1:31









N Pranav SubhravetiN Pranav Subhraveti

2814




2814




New contributor




N Pranav Subhraveti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





N Pranav Subhraveti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






N Pranav Subhraveti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




put on hold as unclear what you're asking by StephenG, A.V.S., Chair, knzhou, Ruslan Apr 15 at 20:11


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.









put on hold as unclear what you're asking by StephenG, A.V.S., Chair, knzhou, Ruslan Apr 15 at 20:11


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.









  • 13




    $begingroup$
    Black bodies DO radiate; dark matter is not black, because it does not radiate. Thermodynamic principles require surfaces which absorb (are black) be good radiators of light, which is a feature absent in dark matter.
    $endgroup$
    – Whit3rd
    Apr 15 at 2:15






  • 5




    $begingroup$
    Dark matter and dark energy are not the same thing
    $endgroup$
    – lcv
    Apr 15 at 3:54






  • 5




    $begingroup$
    I don't see how your conclusions follow from your premises. And that's ignoring that your premises aren't correct. And given how you mix up dark matter and dark energy, not to mention the baryon asymmetry (which has nothing to do with either) I'm quite interested in the way you arrived at your conclusion. How did you come to think that either of these three are in any way related?
    $endgroup$
    – Luaan
    Apr 15 at 7:08






  • 6




    $begingroup$
    You seem to be mixing up dark matter, dark energy, the baryon asymmetry, and blackbodies (which are almost the exact opposite of dark matter) into one big soup -- it's hard to tell what your logic is.
    $endgroup$
    – knzhou
    Apr 15 at 12:46






  • 3




    $begingroup$
    @eromod Uh... no offense, that seems to be a near total reversal of what the video actually says. I know that skepticism of dark matter is very popular in popsci these days, but still.
    $endgroup$
    – knzhou
    Apr 15 at 12:54












  • 13




    $begingroup$
    Black bodies DO radiate; dark matter is not black, because it does not radiate. Thermodynamic principles require surfaces which absorb (are black) be good radiators of light, which is a feature absent in dark matter.
    $endgroup$
    – Whit3rd
    Apr 15 at 2:15






  • 5




    $begingroup$
    Dark matter and dark energy are not the same thing
    $endgroup$
    – lcv
    Apr 15 at 3:54






  • 5




    $begingroup$
    I don't see how your conclusions follow from your premises. And that's ignoring that your premises aren't correct. And given how you mix up dark matter and dark energy, not to mention the baryon asymmetry (which has nothing to do with either) I'm quite interested in the way you arrived at your conclusion. How did you come to think that either of these three are in any way related?
    $endgroup$
    – Luaan
    Apr 15 at 7:08






  • 6




    $begingroup$
    You seem to be mixing up dark matter, dark energy, the baryon asymmetry, and blackbodies (which are almost the exact opposite of dark matter) into one big soup -- it's hard to tell what your logic is.
    $endgroup$
    – knzhou
    Apr 15 at 12:46






  • 3




    $begingroup$
    @eromod Uh... no offense, that seems to be a near total reversal of what the video actually says. I know that skepticism of dark matter is very popular in popsci these days, but still.
    $endgroup$
    – knzhou
    Apr 15 at 12:54







13




13




$begingroup$
Black bodies DO radiate; dark matter is not black, because it does not radiate. Thermodynamic principles require surfaces which absorb (are black) be good radiators of light, which is a feature absent in dark matter.
$endgroup$
– Whit3rd
Apr 15 at 2:15




$begingroup$
Black bodies DO radiate; dark matter is not black, because it does not radiate. Thermodynamic principles require surfaces which absorb (are black) be good radiators of light, which is a feature absent in dark matter.
$endgroup$
– Whit3rd
Apr 15 at 2:15




5




5




$begingroup$
Dark matter and dark energy are not the same thing
$endgroup$
– lcv
Apr 15 at 3:54




$begingroup$
Dark matter and dark energy are not the same thing
$endgroup$
– lcv
Apr 15 at 3:54




5




5




$begingroup$
I don't see how your conclusions follow from your premises. And that's ignoring that your premises aren't correct. And given how you mix up dark matter and dark energy, not to mention the baryon asymmetry (which has nothing to do with either) I'm quite interested in the way you arrived at your conclusion. How did you come to think that either of these three are in any way related?
$endgroup$
– Luaan
Apr 15 at 7:08




$begingroup$
I don't see how your conclusions follow from your premises. And that's ignoring that your premises aren't correct. And given how you mix up dark matter and dark energy, not to mention the baryon asymmetry (which has nothing to do with either) I'm quite interested in the way you arrived at your conclusion. How did you come to think that either of these three are in any way related?
$endgroup$
– Luaan
Apr 15 at 7:08




6




6




$begingroup$
You seem to be mixing up dark matter, dark energy, the baryon asymmetry, and blackbodies (which are almost the exact opposite of dark matter) into one big soup -- it's hard to tell what your logic is.
$endgroup$
– knzhou
Apr 15 at 12:46




$begingroup$
You seem to be mixing up dark matter, dark energy, the baryon asymmetry, and blackbodies (which are almost the exact opposite of dark matter) into one big soup -- it's hard to tell what your logic is.
$endgroup$
– knzhou
Apr 15 at 12:46




3




3




$begingroup$
@eromod Uh... no offense, that seems to be a near total reversal of what the video actually says. I know that skepticism of dark matter is very popular in popsci these days, but still.
$endgroup$
– knzhou
Apr 15 at 12:54




$begingroup$
@eromod Uh... no offense, that seems to be a near total reversal of what the video actually says. I know that skepticism of dark matter is very popular in popsci these days, but still.
$endgroup$
– knzhou
Apr 15 at 12:54










2 Answers
2






active

oldest

votes


















14












$begingroup$

Short answer: yes.



You should look in to the history behind the dark matter hypothesis. It started not from the examination of cosmology and the CMB, but from the motion of galaxies in clusters and stars orbiting around galaxies. See, the vast majority of ordinary matter in every galaxy is contained in the gas between the stars, not the stars themselves. Because of that, we can get a decent handle on how much ordinary matter is around by observing that. Tools for this purpose: the 21 cm line of atomic hydrogen, when the gas is cold, as much of it is in spiral galaxies, and looking at the x-ray spectrum when it is exceptionally hot, as it is between galaxies in large clusters.



When we examine the way the parts of galaxies, and the galaxies in clusters, move, they're travelling way too fast. If the mass we can see direct evidence for is all there is, the clusters would not be able to hold on to their hot gas and galaxies, and the galaxies would not hold together, either.



"So what? Maybe the matter is there, it just isn't giving off light." Trouble is, if it were hot enough to be a plasma, and thus lack spectral lines, we could see it directly. If it were too cold to be a plasma, it would block light from galaxies and quasars in the background more in the matter's spectral lines. So whatever is producing this extra gravity has to neither emit nor absorb light in any way we've been able to detect.



It just so happens that adding dark matter (or something very like it) to the cosmology simulations is also essential to explain the CMB data.



Now, you may object that the extra gravity we've observed may have some other source. For instance, maybe Newton's law of gravitation is simply wrong on the scale of galaxies and larger. The trouble that idea runs into is you're no longer able to explain the bullet cluster, where the gas between the galaxies has collided, but the dark matter and galaxies did not.



On the subject of black body spectra. The black body is the spectrum that a gas of photons assumes if it is in thermal equilibrium (constant uniform temperature everywhere). The CMB is very very nearly a black-body because at the time the differences in temperature between any two parts of the universe were very very small. The sun, however, is surrounded by a very cold vacuum, and that lack of equilibrium will inevitably cause the spectrum to deviate from the ideal Planck function.






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    @0x90 Not likely. The way we measure mass is based on the physics of how light interacts with matter, something we have measured extremely well here on the ground. See, if a gas is thin enough that it is unlikely to reabsorb anything it emits ("optically thin" - see the 21 cm line), then we can deduce the gas temperature from the way the shape of the line is distorted, and the amount of gas along the line of sight ("column density") from brightness. Total mass is just adding up the lines of sight. The process is similar for absorption, just inverted.
    $endgroup$
    – Sean E. Lake
    Apr 15 at 5:45






  • 4




    $begingroup$
    @0x90 That still leaves the question of what could that matter possibly be. Normal atoms and molecules aren't perfectly transparent - plasma even less so. We see the galaxy illuminated in many wavelengths of light. If there is extra mass out there (it's entirely possible there isn't - keep in mind that the calculations are entirely classical, and it's possible e.g. a quantum theory of inertia and/or gravity will correct better than dark matter), it really seems like it doesn't interact with light. That's not really weird on its own - particles don't have to interact electromagnetically.
    $endgroup$
    – Luaan
    Apr 15 at 7:13






  • 1




    $begingroup$
    @JollyJoker Dark matter is a hypothesis that lacks some specifics. Dark matter, for example, is not modified gravity. In other words, when we say "dark matter" we really do mean that it is some kind of "matter" - it obeys F=ma, is constructed of particles that have mass, etc. In the language of particle physics, we'd say that dark matter is composed of excitations in some field (probably fermionic). Modifed gravity, on the other hand, is a change to how the gravitational field behaves, no other fields involved. Crucially, dark matter and regular matter are separable.
    $endgroup$
    – Sean E. Lake
    Apr 15 at 7:45







  • 3




    $begingroup$
    @SeanE.Lake: Just wanted to say thanks for your patient and thorough answer and replies. I have literally never seen anyone explain dark matter so helpfully to laymen.
    $endgroup$
    – Mehrdad
    Apr 15 at 8:27







  • 2




    $begingroup$
    @SeanE.Lake I think that goes a little too far -- at least, it's not how people in the field use the word. For example, "axion dark matter" is quite a popular field of research, but axions are bosonic.
    $endgroup$
    – knzhou
    Apr 15 at 15:19


















10












$begingroup$


But the Sun in our solar system also is in the state of plasma and yet doesn't act like a blackbody




Wrong, the sun radiation is approximately fitted as a black body. The word "black body" does not describe the frequencies, but the assumption that it absorbs all radiation falling on it and re-emits it.



Here is the sun, and it fits the black body formula approximately.



sunbb




Solar irradiance spectrum above atmosphere and at surface. Extreme UV and X-rays are produced (at left of wavelength range shown) but comprise very small amounts of the Sun's total output power.




Plasma is also described by black body radiation.




so it is possible that the universe in its initial stage also behaved similarly. And this is the reason we find find less baryonic matter than we should. Thus making the concept of dark energy irrelevant.




This is wrong, as seen above because your premiss is wrong, but also, dark matter is necessary to fit the newtonian rotational curves of galaxies, and more observational evidence can be found in this link..



Dark matter is a completely classical observation of newtonian and general relativity. Baryon asymmetry comes from quantum mechanical knowledge of the content of the classical masses, and does not involve dark matter in any meaningful manner.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    The resolution of your picture is too small, I can't read it.
    $endgroup$
    – Azzinoth
    Apr 15 at 13:22










  • $begingroup$
    @Azzinoth sorry, I thought I had given the link. If you click on the image in the link a large version appears
    $endgroup$
    – anna v
    Apr 15 at 15:01

















2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









14












$begingroup$

Short answer: yes.



You should look in to the history behind the dark matter hypothesis. It started not from the examination of cosmology and the CMB, but from the motion of galaxies in clusters and stars orbiting around galaxies. See, the vast majority of ordinary matter in every galaxy is contained in the gas between the stars, not the stars themselves. Because of that, we can get a decent handle on how much ordinary matter is around by observing that. Tools for this purpose: the 21 cm line of atomic hydrogen, when the gas is cold, as much of it is in spiral galaxies, and looking at the x-ray spectrum when it is exceptionally hot, as it is between galaxies in large clusters.



When we examine the way the parts of galaxies, and the galaxies in clusters, move, they're travelling way too fast. If the mass we can see direct evidence for is all there is, the clusters would not be able to hold on to their hot gas and galaxies, and the galaxies would not hold together, either.



"So what? Maybe the matter is there, it just isn't giving off light." Trouble is, if it were hot enough to be a plasma, and thus lack spectral lines, we could see it directly. If it were too cold to be a plasma, it would block light from galaxies and quasars in the background more in the matter's spectral lines. So whatever is producing this extra gravity has to neither emit nor absorb light in any way we've been able to detect.



It just so happens that adding dark matter (or something very like it) to the cosmology simulations is also essential to explain the CMB data.



Now, you may object that the extra gravity we've observed may have some other source. For instance, maybe Newton's law of gravitation is simply wrong on the scale of galaxies and larger. The trouble that idea runs into is you're no longer able to explain the bullet cluster, where the gas between the galaxies has collided, but the dark matter and galaxies did not.



On the subject of black body spectra. The black body is the spectrum that a gas of photons assumes if it is in thermal equilibrium (constant uniform temperature everywhere). The CMB is very very nearly a black-body because at the time the differences in temperature between any two parts of the universe were very very small. The sun, however, is surrounded by a very cold vacuum, and that lack of equilibrium will inevitably cause the spectrum to deviate from the ideal Planck function.






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    @0x90 Not likely. The way we measure mass is based on the physics of how light interacts with matter, something we have measured extremely well here on the ground. See, if a gas is thin enough that it is unlikely to reabsorb anything it emits ("optically thin" - see the 21 cm line), then we can deduce the gas temperature from the way the shape of the line is distorted, and the amount of gas along the line of sight ("column density") from brightness. Total mass is just adding up the lines of sight. The process is similar for absorption, just inverted.
    $endgroup$
    – Sean E. Lake
    Apr 15 at 5:45






  • 4




    $begingroup$
    @0x90 That still leaves the question of what could that matter possibly be. Normal atoms and molecules aren't perfectly transparent - plasma even less so. We see the galaxy illuminated in many wavelengths of light. If there is extra mass out there (it's entirely possible there isn't - keep in mind that the calculations are entirely classical, and it's possible e.g. a quantum theory of inertia and/or gravity will correct better than dark matter), it really seems like it doesn't interact with light. That's not really weird on its own - particles don't have to interact electromagnetically.
    $endgroup$
    – Luaan
    Apr 15 at 7:13






  • 1




    $begingroup$
    @JollyJoker Dark matter is a hypothesis that lacks some specifics. Dark matter, for example, is not modified gravity. In other words, when we say "dark matter" we really do mean that it is some kind of "matter" - it obeys F=ma, is constructed of particles that have mass, etc. In the language of particle physics, we'd say that dark matter is composed of excitations in some field (probably fermionic). Modifed gravity, on the other hand, is a change to how the gravitational field behaves, no other fields involved. Crucially, dark matter and regular matter are separable.
    $endgroup$
    – Sean E. Lake
    Apr 15 at 7:45







  • 3




    $begingroup$
    @SeanE.Lake: Just wanted to say thanks for your patient and thorough answer and replies. I have literally never seen anyone explain dark matter so helpfully to laymen.
    $endgroup$
    – Mehrdad
    Apr 15 at 8:27







  • 2




    $begingroup$
    @SeanE.Lake I think that goes a little too far -- at least, it's not how people in the field use the word. For example, "axion dark matter" is quite a popular field of research, but axions are bosonic.
    $endgroup$
    – knzhou
    Apr 15 at 15:19















14












$begingroup$

Short answer: yes.



You should look in to the history behind the dark matter hypothesis. It started not from the examination of cosmology and the CMB, but from the motion of galaxies in clusters and stars orbiting around galaxies. See, the vast majority of ordinary matter in every galaxy is contained in the gas between the stars, not the stars themselves. Because of that, we can get a decent handle on how much ordinary matter is around by observing that. Tools for this purpose: the 21 cm line of atomic hydrogen, when the gas is cold, as much of it is in spiral galaxies, and looking at the x-ray spectrum when it is exceptionally hot, as it is between galaxies in large clusters.



When we examine the way the parts of galaxies, and the galaxies in clusters, move, they're travelling way too fast. If the mass we can see direct evidence for is all there is, the clusters would not be able to hold on to their hot gas and galaxies, and the galaxies would not hold together, either.



"So what? Maybe the matter is there, it just isn't giving off light." Trouble is, if it were hot enough to be a plasma, and thus lack spectral lines, we could see it directly. If it were too cold to be a plasma, it would block light from galaxies and quasars in the background more in the matter's spectral lines. So whatever is producing this extra gravity has to neither emit nor absorb light in any way we've been able to detect.



It just so happens that adding dark matter (or something very like it) to the cosmology simulations is also essential to explain the CMB data.



Now, you may object that the extra gravity we've observed may have some other source. For instance, maybe Newton's law of gravitation is simply wrong on the scale of galaxies and larger. The trouble that idea runs into is you're no longer able to explain the bullet cluster, where the gas between the galaxies has collided, but the dark matter and galaxies did not.



On the subject of black body spectra. The black body is the spectrum that a gas of photons assumes if it is in thermal equilibrium (constant uniform temperature everywhere). The CMB is very very nearly a black-body because at the time the differences in temperature between any two parts of the universe were very very small. The sun, however, is surrounded by a very cold vacuum, and that lack of equilibrium will inevitably cause the spectrum to deviate from the ideal Planck function.






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    @0x90 Not likely. The way we measure mass is based on the physics of how light interacts with matter, something we have measured extremely well here on the ground. See, if a gas is thin enough that it is unlikely to reabsorb anything it emits ("optically thin" - see the 21 cm line), then we can deduce the gas temperature from the way the shape of the line is distorted, and the amount of gas along the line of sight ("column density") from brightness. Total mass is just adding up the lines of sight. The process is similar for absorption, just inverted.
    $endgroup$
    – Sean E. Lake
    Apr 15 at 5:45






  • 4




    $begingroup$
    @0x90 That still leaves the question of what could that matter possibly be. Normal atoms and molecules aren't perfectly transparent - plasma even less so. We see the galaxy illuminated in many wavelengths of light. If there is extra mass out there (it's entirely possible there isn't - keep in mind that the calculations are entirely classical, and it's possible e.g. a quantum theory of inertia and/or gravity will correct better than dark matter), it really seems like it doesn't interact with light. That's not really weird on its own - particles don't have to interact electromagnetically.
    $endgroup$
    – Luaan
    Apr 15 at 7:13






  • 1




    $begingroup$
    @JollyJoker Dark matter is a hypothesis that lacks some specifics. Dark matter, for example, is not modified gravity. In other words, when we say "dark matter" we really do mean that it is some kind of "matter" - it obeys F=ma, is constructed of particles that have mass, etc. In the language of particle physics, we'd say that dark matter is composed of excitations in some field (probably fermionic). Modifed gravity, on the other hand, is a change to how the gravitational field behaves, no other fields involved. Crucially, dark matter and regular matter are separable.
    $endgroup$
    – Sean E. Lake
    Apr 15 at 7:45







  • 3




    $begingroup$
    @SeanE.Lake: Just wanted to say thanks for your patient and thorough answer and replies. I have literally never seen anyone explain dark matter so helpfully to laymen.
    $endgroup$
    – Mehrdad
    Apr 15 at 8:27







  • 2




    $begingroup$
    @SeanE.Lake I think that goes a little too far -- at least, it's not how people in the field use the word. For example, "axion dark matter" is quite a popular field of research, but axions are bosonic.
    $endgroup$
    – knzhou
    Apr 15 at 15:19













14












14








14





$begingroup$

Short answer: yes.



You should look in to the history behind the dark matter hypothesis. It started not from the examination of cosmology and the CMB, but from the motion of galaxies in clusters and stars orbiting around galaxies. See, the vast majority of ordinary matter in every galaxy is contained in the gas between the stars, not the stars themselves. Because of that, we can get a decent handle on how much ordinary matter is around by observing that. Tools for this purpose: the 21 cm line of atomic hydrogen, when the gas is cold, as much of it is in spiral galaxies, and looking at the x-ray spectrum when it is exceptionally hot, as it is between galaxies in large clusters.



When we examine the way the parts of galaxies, and the galaxies in clusters, move, they're travelling way too fast. If the mass we can see direct evidence for is all there is, the clusters would not be able to hold on to their hot gas and galaxies, and the galaxies would not hold together, either.



"So what? Maybe the matter is there, it just isn't giving off light." Trouble is, if it were hot enough to be a plasma, and thus lack spectral lines, we could see it directly. If it were too cold to be a plasma, it would block light from galaxies and quasars in the background more in the matter's spectral lines. So whatever is producing this extra gravity has to neither emit nor absorb light in any way we've been able to detect.



It just so happens that adding dark matter (or something very like it) to the cosmology simulations is also essential to explain the CMB data.



Now, you may object that the extra gravity we've observed may have some other source. For instance, maybe Newton's law of gravitation is simply wrong on the scale of galaxies and larger. The trouble that idea runs into is you're no longer able to explain the bullet cluster, where the gas between the galaxies has collided, but the dark matter and galaxies did not.



On the subject of black body spectra. The black body is the spectrum that a gas of photons assumes if it is in thermal equilibrium (constant uniform temperature everywhere). The CMB is very very nearly a black-body because at the time the differences in temperature between any two parts of the universe were very very small. The sun, however, is surrounded by a very cold vacuum, and that lack of equilibrium will inevitably cause the spectrum to deviate from the ideal Planck function.






share|cite|improve this answer









$endgroup$



Short answer: yes.



You should look in to the history behind the dark matter hypothesis. It started not from the examination of cosmology and the CMB, but from the motion of galaxies in clusters and stars orbiting around galaxies. See, the vast majority of ordinary matter in every galaxy is contained in the gas between the stars, not the stars themselves. Because of that, we can get a decent handle on how much ordinary matter is around by observing that. Tools for this purpose: the 21 cm line of atomic hydrogen, when the gas is cold, as much of it is in spiral galaxies, and looking at the x-ray spectrum when it is exceptionally hot, as it is between galaxies in large clusters.



When we examine the way the parts of galaxies, and the galaxies in clusters, move, they're travelling way too fast. If the mass we can see direct evidence for is all there is, the clusters would not be able to hold on to their hot gas and galaxies, and the galaxies would not hold together, either.



"So what? Maybe the matter is there, it just isn't giving off light." Trouble is, if it were hot enough to be a plasma, and thus lack spectral lines, we could see it directly. If it were too cold to be a plasma, it would block light from galaxies and quasars in the background more in the matter's spectral lines. So whatever is producing this extra gravity has to neither emit nor absorb light in any way we've been able to detect.



It just so happens that adding dark matter (or something very like it) to the cosmology simulations is also essential to explain the CMB data.



Now, you may object that the extra gravity we've observed may have some other source. For instance, maybe Newton's law of gravitation is simply wrong on the scale of galaxies and larger. The trouble that idea runs into is you're no longer able to explain the bullet cluster, where the gas between the galaxies has collided, but the dark matter and galaxies did not.



On the subject of black body spectra. The black body is the spectrum that a gas of photons assumes if it is in thermal equilibrium (constant uniform temperature everywhere). The CMB is very very nearly a black-body because at the time the differences in temperature between any two parts of the universe were very very small. The sun, however, is surrounded by a very cold vacuum, and that lack of equilibrium will inevitably cause the spectrum to deviate from the ideal Planck function.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Apr 15 at 5:26









Sean E. LakeSean E. Lake

15k12352




15k12352







  • 2




    $begingroup$
    @0x90 Not likely. The way we measure mass is based on the physics of how light interacts with matter, something we have measured extremely well here on the ground. See, if a gas is thin enough that it is unlikely to reabsorb anything it emits ("optically thin" - see the 21 cm line), then we can deduce the gas temperature from the way the shape of the line is distorted, and the amount of gas along the line of sight ("column density") from brightness. Total mass is just adding up the lines of sight. The process is similar for absorption, just inverted.
    $endgroup$
    – Sean E. Lake
    Apr 15 at 5:45






  • 4




    $begingroup$
    @0x90 That still leaves the question of what could that matter possibly be. Normal atoms and molecules aren't perfectly transparent - plasma even less so. We see the galaxy illuminated in many wavelengths of light. If there is extra mass out there (it's entirely possible there isn't - keep in mind that the calculations are entirely classical, and it's possible e.g. a quantum theory of inertia and/or gravity will correct better than dark matter), it really seems like it doesn't interact with light. That's not really weird on its own - particles don't have to interact electromagnetically.
    $endgroup$
    – Luaan
    Apr 15 at 7:13






  • 1




    $begingroup$
    @JollyJoker Dark matter is a hypothesis that lacks some specifics. Dark matter, for example, is not modified gravity. In other words, when we say "dark matter" we really do mean that it is some kind of "matter" - it obeys F=ma, is constructed of particles that have mass, etc. In the language of particle physics, we'd say that dark matter is composed of excitations in some field (probably fermionic). Modifed gravity, on the other hand, is a change to how the gravitational field behaves, no other fields involved. Crucially, dark matter and regular matter are separable.
    $endgroup$
    – Sean E. Lake
    Apr 15 at 7:45







  • 3




    $begingroup$
    @SeanE.Lake: Just wanted to say thanks for your patient and thorough answer and replies. I have literally never seen anyone explain dark matter so helpfully to laymen.
    $endgroup$
    – Mehrdad
    Apr 15 at 8:27







  • 2




    $begingroup$
    @SeanE.Lake I think that goes a little too far -- at least, it's not how people in the field use the word. For example, "axion dark matter" is quite a popular field of research, but axions are bosonic.
    $endgroup$
    – knzhou
    Apr 15 at 15:19












  • 2




    $begingroup$
    @0x90 Not likely. The way we measure mass is based on the physics of how light interacts with matter, something we have measured extremely well here on the ground. See, if a gas is thin enough that it is unlikely to reabsorb anything it emits ("optically thin" - see the 21 cm line), then we can deduce the gas temperature from the way the shape of the line is distorted, and the amount of gas along the line of sight ("column density") from brightness. Total mass is just adding up the lines of sight. The process is similar for absorption, just inverted.
    $endgroup$
    – Sean E. Lake
    Apr 15 at 5:45






  • 4




    $begingroup$
    @0x90 That still leaves the question of what could that matter possibly be. Normal atoms and molecules aren't perfectly transparent - plasma even less so. We see the galaxy illuminated in many wavelengths of light. If there is extra mass out there (it's entirely possible there isn't - keep in mind that the calculations are entirely classical, and it's possible e.g. a quantum theory of inertia and/or gravity will correct better than dark matter), it really seems like it doesn't interact with light. That's not really weird on its own - particles don't have to interact electromagnetically.
    $endgroup$
    – Luaan
    Apr 15 at 7:13






  • 1




    $begingroup$
    @JollyJoker Dark matter is a hypothesis that lacks some specifics. Dark matter, for example, is not modified gravity. In other words, when we say "dark matter" we really do mean that it is some kind of "matter" - it obeys F=ma, is constructed of particles that have mass, etc. In the language of particle physics, we'd say that dark matter is composed of excitations in some field (probably fermionic). Modifed gravity, on the other hand, is a change to how the gravitational field behaves, no other fields involved. Crucially, dark matter and regular matter are separable.
    $endgroup$
    – Sean E. Lake
    Apr 15 at 7:45







  • 3




    $begingroup$
    @SeanE.Lake: Just wanted to say thanks for your patient and thorough answer and replies. I have literally never seen anyone explain dark matter so helpfully to laymen.
    $endgroup$
    – Mehrdad
    Apr 15 at 8:27







  • 2




    $begingroup$
    @SeanE.Lake I think that goes a little too far -- at least, it's not how people in the field use the word. For example, "axion dark matter" is quite a popular field of research, but axions are bosonic.
    $endgroup$
    – knzhou
    Apr 15 at 15:19







2




2




$begingroup$
@0x90 Not likely. The way we measure mass is based on the physics of how light interacts with matter, something we have measured extremely well here on the ground. See, if a gas is thin enough that it is unlikely to reabsorb anything it emits ("optically thin" - see the 21 cm line), then we can deduce the gas temperature from the way the shape of the line is distorted, and the amount of gas along the line of sight ("column density") from brightness. Total mass is just adding up the lines of sight. The process is similar for absorption, just inverted.
$endgroup$
– Sean E. Lake
Apr 15 at 5:45




$begingroup$
@0x90 Not likely. The way we measure mass is based on the physics of how light interacts with matter, something we have measured extremely well here on the ground. See, if a gas is thin enough that it is unlikely to reabsorb anything it emits ("optically thin" - see the 21 cm line), then we can deduce the gas temperature from the way the shape of the line is distorted, and the amount of gas along the line of sight ("column density") from brightness. Total mass is just adding up the lines of sight. The process is similar for absorption, just inverted.
$endgroup$
– Sean E. Lake
Apr 15 at 5:45




4




4




$begingroup$
@0x90 That still leaves the question of what could that matter possibly be. Normal atoms and molecules aren't perfectly transparent - plasma even less so. We see the galaxy illuminated in many wavelengths of light. If there is extra mass out there (it's entirely possible there isn't - keep in mind that the calculations are entirely classical, and it's possible e.g. a quantum theory of inertia and/or gravity will correct better than dark matter), it really seems like it doesn't interact with light. That's not really weird on its own - particles don't have to interact electromagnetically.
$endgroup$
– Luaan
Apr 15 at 7:13




$begingroup$
@0x90 That still leaves the question of what could that matter possibly be. Normal atoms and molecules aren't perfectly transparent - plasma even less so. We see the galaxy illuminated in many wavelengths of light. If there is extra mass out there (it's entirely possible there isn't - keep in mind that the calculations are entirely classical, and it's possible e.g. a quantum theory of inertia and/or gravity will correct better than dark matter), it really seems like it doesn't interact with light. That's not really weird on its own - particles don't have to interact electromagnetically.
$endgroup$
– Luaan
Apr 15 at 7:13




1




1




$begingroup$
@JollyJoker Dark matter is a hypothesis that lacks some specifics. Dark matter, for example, is not modified gravity. In other words, when we say "dark matter" we really do mean that it is some kind of "matter" - it obeys F=ma, is constructed of particles that have mass, etc. In the language of particle physics, we'd say that dark matter is composed of excitations in some field (probably fermionic). Modifed gravity, on the other hand, is a change to how the gravitational field behaves, no other fields involved. Crucially, dark matter and regular matter are separable.
$endgroup$
– Sean E. Lake
Apr 15 at 7:45





$begingroup$
@JollyJoker Dark matter is a hypothesis that lacks some specifics. Dark matter, for example, is not modified gravity. In other words, when we say "dark matter" we really do mean that it is some kind of "matter" - it obeys F=ma, is constructed of particles that have mass, etc. In the language of particle physics, we'd say that dark matter is composed of excitations in some field (probably fermionic). Modifed gravity, on the other hand, is a change to how the gravitational field behaves, no other fields involved. Crucially, dark matter and regular matter are separable.
$endgroup$
– Sean E. Lake
Apr 15 at 7:45





3




3




$begingroup$
@SeanE.Lake: Just wanted to say thanks for your patient and thorough answer and replies. I have literally never seen anyone explain dark matter so helpfully to laymen.
$endgroup$
– Mehrdad
Apr 15 at 8:27





$begingroup$
@SeanE.Lake: Just wanted to say thanks for your patient and thorough answer and replies. I have literally never seen anyone explain dark matter so helpfully to laymen.
$endgroup$
– Mehrdad
Apr 15 at 8:27





2




2




$begingroup$
@SeanE.Lake I think that goes a little too far -- at least, it's not how people in the field use the word. For example, "axion dark matter" is quite a popular field of research, but axions are bosonic.
$endgroup$
– knzhou
Apr 15 at 15:19




$begingroup$
@SeanE.Lake I think that goes a little too far -- at least, it's not how people in the field use the word. For example, "axion dark matter" is quite a popular field of research, but axions are bosonic.
$endgroup$
– knzhou
Apr 15 at 15:19











10












$begingroup$


But the Sun in our solar system also is in the state of plasma and yet doesn't act like a blackbody




Wrong, the sun radiation is approximately fitted as a black body. The word "black body" does not describe the frequencies, but the assumption that it absorbs all radiation falling on it and re-emits it.



Here is the sun, and it fits the black body formula approximately.



sunbb




Solar irradiance spectrum above atmosphere and at surface. Extreme UV and X-rays are produced (at left of wavelength range shown) but comprise very small amounts of the Sun's total output power.




Plasma is also described by black body radiation.




so it is possible that the universe in its initial stage also behaved similarly. And this is the reason we find find less baryonic matter than we should. Thus making the concept of dark energy irrelevant.




This is wrong, as seen above because your premiss is wrong, but also, dark matter is necessary to fit the newtonian rotational curves of galaxies, and more observational evidence can be found in this link..



Dark matter is a completely classical observation of newtonian and general relativity. Baryon asymmetry comes from quantum mechanical knowledge of the content of the classical masses, and does not involve dark matter in any meaningful manner.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    The resolution of your picture is too small, I can't read it.
    $endgroup$
    – Azzinoth
    Apr 15 at 13:22










  • $begingroup$
    @Azzinoth sorry, I thought I had given the link. If you click on the image in the link a large version appears
    $endgroup$
    – anna v
    Apr 15 at 15:01















10












$begingroup$


But the Sun in our solar system also is in the state of plasma and yet doesn't act like a blackbody




Wrong, the sun radiation is approximately fitted as a black body. The word "black body" does not describe the frequencies, but the assumption that it absorbs all radiation falling on it and re-emits it.



Here is the sun, and it fits the black body formula approximately.



sunbb




Solar irradiance spectrum above atmosphere and at surface. Extreme UV and X-rays are produced (at left of wavelength range shown) but comprise very small amounts of the Sun's total output power.




Plasma is also described by black body radiation.




so it is possible that the universe in its initial stage also behaved similarly. And this is the reason we find find less baryonic matter than we should. Thus making the concept of dark energy irrelevant.




This is wrong, as seen above because your premiss is wrong, but also, dark matter is necessary to fit the newtonian rotational curves of galaxies, and more observational evidence can be found in this link..



Dark matter is a completely classical observation of newtonian and general relativity. Baryon asymmetry comes from quantum mechanical knowledge of the content of the classical masses, and does not involve dark matter in any meaningful manner.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    The resolution of your picture is too small, I can't read it.
    $endgroup$
    – Azzinoth
    Apr 15 at 13:22










  • $begingroup$
    @Azzinoth sorry, I thought I had given the link. If you click on the image in the link a large version appears
    $endgroup$
    – anna v
    Apr 15 at 15:01













10












10








10





$begingroup$


But the Sun in our solar system also is in the state of plasma and yet doesn't act like a blackbody




Wrong, the sun radiation is approximately fitted as a black body. The word "black body" does not describe the frequencies, but the assumption that it absorbs all radiation falling on it and re-emits it.



Here is the sun, and it fits the black body formula approximately.



sunbb




Solar irradiance spectrum above atmosphere and at surface. Extreme UV and X-rays are produced (at left of wavelength range shown) but comprise very small amounts of the Sun's total output power.




Plasma is also described by black body radiation.




so it is possible that the universe in its initial stage also behaved similarly. And this is the reason we find find less baryonic matter than we should. Thus making the concept of dark energy irrelevant.




This is wrong, as seen above because your premiss is wrong, but also, dark matter is necessary to fit the newtonian rotational curves of galaxies, and more observational evidence can be found in this link..



Dark matter is a completely classical observation of newtonian and general relativity. Baryon asymmetry comes from quantum mechanical knowledge of the content of the classical masses, and does not involve dark matter in any meaningful manner.






share|cite|improve this answer











$endgroup$




But the Sun in our solar system also is in the state of plasma and yet doesn't act like a blackbody




Wrong, the sun radiation is approximately fitted as a black body. The word "black body" does not describe the frequencies, but the assumption that it absorbs all radiation falling on it and re-emits it.



Here is the sun, and it fits the black body formula approximately.



sunbb




Solar irradiance spectrum above atmosphere and at surface. Extreme UV and X-rays are produced (at left of wavelength range shown) but comprise very small amounts of the Sun's total output power.




Plasma is also described by black body radiation.




so it is possible that the universe in its initial stage also behaved similarly. And this is the reason we find find less baryonic matter than we should. Thus making the concept of dark energy irrelevant.




This is wrong, as seen above because your premiss is wrong, but also, dark matter is necessary to fit the newtonian rotational curves of galaxies, and more observational evidence can be found in this link..



Dark matter is a completely classical observation of newtonian and general relativity. Baryon asymmetry comes from quantum mechanical knowledge of the content of the classical masses, and does not involve dark matter in any meaningful manner.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Apr 15 at 15:00

























answered Apr 15 at 4:58









anna vanna v

162k8153457




162k8153457











  • $begingroup$
    The resolution of your picture is too small, I can't read it.
    $endgroup$
    – Azzinoth
    Apr 15 at 13:22










  • $begingroup$
    @Azzinoth sorry, I thought I had given the link. If you click on the image in the link a large version appears
    $endgroup$
    – anna v
    Apr 15 at 15:01
















  • $begingroup$
    The resolution of your picture is too small, I can't read it.
    $endgroup$
    – Azzinoth
    Apr 15 at 13:22










  • $begingroup$
    @Azzinoth sorry, I thought I had given the link. If you click on the image in the link a large version appears
    $endgroup$
    – anna v
    Apr 15 at 15:01















$begingroup$
The resolution of your picture is too small, I can't read it.
$endgroup$
– Azzinoth
Apr 15 at 13:22




$begingroup$
The resolution of your picture is too small, I can't read it.
$endgroup$
– Azzinoth
Apr 15 at 13:22












$begingroup$
@Azzinoth sorry, I thought I had given the link. If you click on the image in the link a large version appears
$endgroup$
– anna v
Apr 15 at 15:01




$begingroup$
@Azzinoth sorry, I thought I had given the link. If you click on the image in the link a large version appears
$endgroup$
– anna v
Apr 15 at 15:01



Popular posts from this blog

Sum ergo cogito? 1 nng

三茅街道4182Guuntc Dn precexpngmageondP