How to Prove P(a) → ∀x(P(x) ∨ ¬(x = a)) using Natural DeductionUsing natural deduction rules give a formal proofIntroductory Natural Deduction QuestionProve A ∨ D from A ∨ (B ∧ C) and (¬ B ∨ ¬ C) ∨ D ( LPL Q6.26) without using --> or material implicationGiven P ∨ ¬ P prove (P → Q) → ((¬ P → Q) → Q) by natural deductionHow to prove ¬(p→q) ⊢ p &¬qDoes anyone have a proof checker they prefer using for modal logic?How do you prove law of excluded middle using tertium non datur?How to prove : (( P → Q ) ∨ ( Q → R )) by natural deductionHow to prove ‘∃xP(x)’ from ‘¬∀x(P(x)→Q(x))’How would i go about using natural deduction to prove this argument is valid?

infared filters v nd

Is it unprofessional to ask if a job posting on GlassDoor is real?

Why can't I see bouncing of switch on oscilloscope screen?

Cross compiling for RPi - error while loading shared libraries

Malformed Address '10.10.21.08/24', must be X.X.X.X/NN or

What does "Puller Prush Person" mean?

I'm flying to France today and my passport expires in less than 2 months

Why does Kotter return in Welcome Back Kotter?

Important Resources for Dark Age Civilizations?

Are astronomers waiting to see something in an image from a gravitational lens that they've already seen in an adjacent image?

What typically incentivizes a professor to change jobs to a lower ranking university?

dbcc cleantable batch size explanation

RSA: Danger of using p to create q

Did Shadowfax go to Valinor?

Is it legal for company to use my work email to pretend I still work there?

DC-DC converter from low voltage at high current, to high voltage at low current

Can a Cauchy sequence converge for one metric while not converging for another?

Why can't we play rap on piano?

LWC SFDX source push error TypeError: LWC1009: decl.moveTo is not a function

Is it inappropriate for a student to attend their mentor's dissertation defense?

Are the number of citations and number of published articles the most important criteria for a tenure promotion?

Today is the Center

Do I have a twin with permutated remainders?

What's that red-plus icon near a text?



How to Prove P(a) → ∀x(P(x) ∨ ¬(x = a)) using Natural Deduction


Using natural deduction rules give a formal proofIntroductory Natural Deduction QuestionProve A ∨ D from A ∨ (B ∧ C) and (¬ B ∨ ¬ C) ∨ D ( LPL Q6.26) without using --> or material implicationGiven P ∨ ¬ P prove (P → Q) → ((¬ P → Q) → Q) by natural deductionHow to prove ¬(p→q) ⊢ p &¬qDoes anyone have a proof checker they prefer using for modal logic?How do you prove law of excluded middle using tertium non datur?How to prove : (( P → Q ) ∨ ( Q → R )) by natural deductionHow to prove ‘∃xP(x)’ from ‘¬∀x(P(x)→Q(x))’How would i go about using natural deduction to prove this argument is valid?













4















How would a formal Fitch proof look like.
I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
I am confused on how to proceed with the proof.
Please advice me on how to go about with this.



Thanks in advance










share|improve this question







New contributor




Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
























    4















    How would a formal Fitch proof look like.
    I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
    I am confused on how to proceed with the proof.
    Please advice me on how to go about with this.



    Thanks in advance










    share|improve this question







    New contributor




    Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






















      4












      4








      4








      How would a formal Fitch proof look like.
      I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
      I am confused on how to proceed with the proof.
      Please advice me on how to go about with this.



      Thanks in advance










      share|improve this question







      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.












      How would a formal Fitch proof look like.
      I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
      I am confused on how to proceed with the proof.
      Please advice me on how to go about with this.



      Thanks in advance







      logic proof fitch quantification






      share|improve this question







      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Apr 2 at 23:56









      Moey mnmMoey mnm

      263




      263




      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          4














          HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



          The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be the individual such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



          Hope this helps!






          share|improve this answer




















          • 1





            Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org

            – Frank Hubeny
            2 days ago











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "265"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61580%2fhow-to-prove-pa-%25e2%2586%2592-%25e2%2588%2580xpx-%25e2%2588%25a8-%25c2%25acx-a-using-natural-deduction%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4














          HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



          The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be the individual such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



          Hope this helps!






          share|improve this answer




















          • 1





            Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org

            – Frank Hubeny
            2 days ago















          4














          HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



          The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be the individual such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



          Hope this helps!






          share|improve this answer




















          • 1





            Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org

            – Frank Hubeny
            2 days ago













          4












          4








          4







          HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



          The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be the individual such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



          Hope this helps!






          share|improve this answer















          HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



          The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be the individual such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



          Hope this helps!







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 2 days ago

























          answered Apr 3 at 1:12









          AdamAdam

          4908




          4908







          • 1





            Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org

            – Frank Hubeny
            2 days ago












          • 1





            Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org

            – Frank Hubeny
            2 days ago







          1




          1





          Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org

          – Frank Hubeny
          2 days ago





          Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org

          – Frank Hubeny
          2 days ago










          Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.












          Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.











          Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Philosophy Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61580%2fhow-to-prove-pa-%25e2%2586%2592-%25e2%2588%2580xpx-%25e2%2588%25a8-%25c2%25acx-a-using-natural-deduction%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Sum ergo cogito? 1 nng

          三茅街道4182Guuntc Dn precexpngmageondP