Calculate Levenshtein distance between two strings in Python The 2019 Stack Overflow Developer Survey Results Are InEdit Distance Between Two StringsString Matching and ClusteringSorting movie search results by similarityEdit distance between 2 stringsMaking the Levenshtein distance code cleanerEdit distance (Optimal Alignment) - follow upGet Levenshtein DistanceMessage classification with Levenshtein DistanceCode to implement the Jaro similarity for fuzzy matching stringsFinding differences in strings with Levenshtein distance and soundex
The phrase "to the numbers born"?
Time travel alters history but people keep saying nothing's changed
Does HR tell a hiring manager about salary negotiations?
What information about me do stores get via my credit card?
I am an eight letter word. What am I?
How to charge AirPods to keep battery healthy?
Why not take a picture of a closer black hole?
How do PCB vias affect signal quality?
How do you keep chess fun when your opponent constantly beats you?
What do these terms in Caesar's Gallic Wars mean?
How to display lines in a file like ls displays files in a directory?
Why can't devices on different VLANs, but on the same subnet, communicate?
Accepted by European university, rejected by all American ones I applied to? Possible reasons?
Does adding complexity mean a more secure cipher?
Getting crown tickets for Statue of Liberty
Did Scotland spend $250,000 for the slogan "Welcome to Scotland"?
How can I add encounters in the Lost Mine of Phandelver campaign without giving PCs too much XP?
Can withdrawing asylum be illegal?
Ubuntu Server install with full GUI
Is there a way to generate a uniformly distributed point on a sphere from a fixed amount of random real numbers?
How to type this arrow in math mode?
Match Roman Numerals
The difference between dialogue marks
Can an undergraduate be advised by a professor who is very far away?
Calculate Levenshtein distance between two strings in Python
The 2019 Stack Overflow Developer Survey Results Are InEdit Distance Between Two StringsString Matching and ClusteringSorting movie search results by similarityEdit distance between 2 stringsMaking the Levenshtein distance code cleanerEdit distance (Optimal Alignment) - follow upGet Levenshtein DistanceMessage classification with Levenshtein DistanceCode to implement the Jaro similarity for fuzzy matching stringsFinding differences in strings with Levenshtein distance and soundex
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
I need a function that checks how different are two different strings. I chose the Levenshtein distance as a quick approach, and implemented this function:
from difflib import ndiff
def calculate_levenshtein_distance(str_1, str_2):
"""
The Levenshtein distance is a string metric for measuring the difference between two sequences.
It is calculated as the minimum number of single-character edits necessary to transform one string into another
"""
distance = 0
buffer_removed = buffer_added = 0
for x in ndiff(str_1, str_2):
code = x[0]
# Code ? is ignored as it does not translate to any modification
if code == ' ':
distance += max(buffer_removed, buffer_added)
buffer_removed = buffer_added = 0
elif code == '-':
buffer_removed += 1
elif code == '+':
buffer_added += 1
distance += max(buffer_removed, buffer_added)
return distance
Then calling it as:
similarity = 1 - calculate_levenshtein_distance(str_1, str_2) / max(len(str_1), len(str_2))
How sloppy/prone to errors is this code? How can it be improved?
python edit-distance
New contributor
$endgroup$
add a comment |
$begingroup$
I need a function that checks how different are two different strings. I chose the Levenshtein distance as a quick approach, and implemented this function:
from difflib import ndiff
def calculate_levenshtein_distance(str_1, str_2):
"""
The Levenshtein distance is a string metric for measuring the difference between two sequences.
It is calculated as the minimum number of single-character edits necessary to transform one string into another
"""
distance = 0
buffer_removed = buffer_added = 0
for x in ndiff(str_1, str_2):
code = x[0]
# Code ? is ignored as it does not translate to any modification
if code == ' ':
distance += max(buffer_removed, buffer_added)
buffer_removed = buffer_added = 0
elif code == '-':
buffer_removed += 1
elif code == '+':
buffer_added += 1
distance += max(buffer_removed, buffer_added)
return distance
Then calling it as:
similarity = 1 - calculate_levenshtein_distance(str_1, str_2) / max(len(str_1), len(str_2))
How sloppy/prone to errors is this code? How can it be improved?
python edit-distance
New contributor
$endgroup$
add a comment |
$begingroup$
I need a function that checks how different are two different strings. I chose the Levenshtein distance as a quick approach, and implemented this function:
from difflib import ndiff
def calculate_levenshtein_distance(str_1, str_2):
"""
The Levenshtein distance is a string metric for measuring the difference between two sequences.
It is calculated as the minimum number of single-character edits necessary to transform one string into another
"""
distance = 0
buffer_removed = buffer_added = 0
for x in ndiff(str_1, str_2):
code = x[0]
# Code ? is ignored as it does not translate to any modification
if code == ' ':
distance += max(buffer_removed, buffer_added)
buffer_removed = buffer_added = 0
elif code == '-':
buffer_removed += 1
elif code == '+':
buffer_added += 1
distance += max(buffer_removed, buffer_added)
return distance
Then calling it as:
similarity = 1 - calculate_levenshtein_distance(str_1, str_2) / max(len(str_1), len(str_2))
How sloppy/prone to errors is this code? How can it be improved?
python edit-distance
New contributor
$endgroup$
I need a function that checks how different are two different strings. I chose the Levenshtein distance as a quick approach, and implemented this function:
from difflib import ndiff
def calculate_levenshtein_distance(str_1, str_2):
"""
The Levenshtein distance is a string metric for measuring the difference between two sequences.
It is calculated as the minimum number of single-character edits necessary to transform one string into another
"""
distance = 0
buffer_removed = buffer_added = 0
for x in ndiff(str_1, str_2):
code = x[0]
# Code ? is ignored as it does not translate to any modification
if code == ' ':
distance += max(buffer_removed, buffer_added)
buffer_removed = buffer_added = 0
elif code == '-':
buffer_removed += 1
elif code == '+':
buffer_added += 1
distance += max(buffer_removed, buffer_added)
return distance
Then calling it as:
similarity = 1 - calculate_levenshtein_distance(str_1, str_2) / max(len(str_1), len(str_2))
How sloppy/prone to errors is this code? How can it be improved?
python edit-distance
python edit-distance
New contributor
New contributor
edited Apr 8 at 19:14
Reinderien
5,445927
5,445927
New contributor
asked Apr 8 at 10:01
Kyra_WKyra_W
585
585
New contributor
New contributor
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
There is a module available for exactly that calculation, python-Levenshtein
. You can install it with pip install python-Levenshtein
.
It is implemented in C, so is probably faster than anything you can come up with yourself.
from Levenshtein import distance as levenshtein_distance
According to the docstring
conventions, your docstring should look like this, i.e. with the indentation aligned to the """
and the line length curtailed to 80 characters.
def calculate_levenshtein_distance(str_1, str_2):
"""
The Levenshtein distance is a string metric for measuring the difference
between two sequences.
It is calculated as the minimum number of single-character edits necessary to
transform one string into another.
"""
...
$endgroup$
10
$begingroup$
Just to note the module is licensed under GPL 2.0 so watch out if you're using it for work.
$endgroup$
– lucasgcb
Apr 8 at 13:08
$begingroup$
Just to point out a small nitpick to other people who may stumble upon this answer, as per help center: "Every answer must make at least one insightful observation about the code in the question. Answers that merely provide an alternate solution with no explanation or justification do not constitute valid Code Review answers and may be deleted." While this answer does provide alternative and existing module suggestion, it also goes into some suggestions about improving code quality. So it's an example of a decent answer
$endgroup$
– Sergiy Kolodyazhnyy
Apr 9 at 0:02
$begingroup$
Thanks! I did not know of this module. Will check it out
$endgroup$
– Kyra_W
2 days ago
1
$begingroup$
@SergiyKolodyazhnyy While I (obviously) agree, and that is one of the reasons I added that part, I would actually argue that "It is implemented in C, so is probably faster than anything you can come up with yourself" would get around the "no explanation or justification" clause
$endgroup$
– Graipher
2 days ago
add a comment |
$begingroup$
The code itself is rather clear. There are some smaller changes I would make
tuple unpacking
You can use tuple unpacking to do:
for code, *_ in ndiff(str1, str2):
instead of:
for x in ndiff(str_1, str_2):
code = x[0]
dict results:
Instead of a counter for the additions and removals, I would keep it in 1 dict: counter = ("+": 0, "-": 0)
def levenshtein_distance(str1, str2, ):
counter = "+": 0, "-": 0
distance = 0
for edit_code, *_ in ndiff(str1, str2):
if edit_code == " ":
distance += max(counter.values())
counter = "+": 0, "-": 0
else:
counter[edit_code] += 1
distance += max(counter.values())
return distance
generators
A smaller, less useful variation, is to let this method be a generator, and use the builtin sum
to do the summary. this saves 1 variable inside the function:
def levenshtein_distance_gen(str1, str2, ):
counter = "+": 0, "-": 0
for edit_code, *_ in ndiff(str1, str2):
if edit_code == " ":
yield max(counter.values())
counter = "+": 0, "-": 0
else:
counter[edit_code] += 1
yield max(counter.values())
sum(levenshtein_distance_gen(str1, str2))
timings
The differences in timings between the original and both these variations are minimal, and within the variation of results. This is rather logical, since for simple strings (aaabbbc
and abcabcabc
) 90% of the time is spent in ndiff
$endgroup$
$begingroup$
Awesome suggestions. I had not even considered the generator approach, but it looks very nice. Thanks
$endgroup$
– Kyra_W
2 days ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
);
);
, "mathjax-editing");
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "196"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Kyra_W is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f217065%2fcalculate-levenshtein-distance-between-two-strings-in-python%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
There is a module available for exactly that calculation, python-Levenshtein
. You can install it with pip install python-Levenshtein
.
It is implemented in C, so is probably faster than anything you can come up with yourself.
from Levenshtein import distance as levenshtein_distance
According to the docstring
conventions, your docstring should look like this, i.e. with the indentation aligned to the """
and the line length curtailed to 80 characters.
def calculate_levenshtein_distance(str_1, str_2):
"""
The Levenshtein distance is a string metric for measuring the difference
between two sequences.
It is calculated as the minimum number of single-character edits necessary to
transform one string into another.
"""
...
$endgroup$
10
$begingroup$
Just to note the module is licensed under GPL 2.0 so watch out if you're using it for work.
$endgroup$
– lucasgcb
Apr 8 at 13:08
$begingroup$
Just to point out a small nitpick to other people who may stumble upon this answer, as per help center: "Every answer must make at least one insightful observation about the code in the question. Answers that merely provide an alternate solution with no explanation or justification do not constitute valid Code Review answers and may be deleted." While this answer does provide alternative and existing module suggestion, it also goes into some suggestions about improving code quality. So it's an example of a decent answer
$endgroup$
– Sergiy Kolodyazhnyy
Apr 9 at 0:02
$begingroup$
Thanks! I did not know of this module. Will check it out
$endgroup$
– Kyra_W
2 days ago
1
$begingroup$
@SergiyKolodyazhnyy While I (obviously) agree, and that is one of the reasons I added that part, I would actually argue that "It is implemented in C, so is probably faster than anything you can come up with yourself" would get around the "no explanation or justification" clause
$endgroup$
– Graipher
2 days ago
add a comment |
$begingroup$
There is a module available for exactly that calculation, python-Levenshtein
. You can install it with pip install python-Levenshtein
.
It is implemented in C, so is probably faster than anything you can come up with yourself.
from Levenshtein import distance as levenshtein_distance
According to the docstring
conventions, your docstring should look like this, i.e. with the indentation aligned to the """
and the line length curtailed to 80 characters.
def calculate_levenshtein_distance(str_1, str_2):
"""
The Levenshtein distance is a string metric for measuring the difference
between two sequences.
It is calculated as the minimum number of single-character edits necessary to
transform one string into another.
"""
...
$endgroup$
10
$begingroup$
Just to note the module is licensed under GPL 2.0 so watch out if you're using it for work.
$endgroup$
– lucasgcb
Apr 8 at 13:08
$begingroup$
Just to point out a small nitpick to other people who may stumble upon this answer, as per help center: "Every answer must make at least one insightful observation about the code in the question. Answers that merely provide an alternate solution with no explanation or justification do not constitute valid Code Review answers and may be deleted." While this answer does provide alternative and existing module suggestion, it also goes into some suggestions about improving code quality. So it's an example of a decent answer
$endgroup$
– Sergiy Kolodyazhnyy
Apr 9 at 0:02
$begingroup$
Thanks! I did not know of this module. Will check it out
$endgroup$
– Kyra_W
2 days ago
1
$begingroup$
@SergiyKolodyazhnyy While I (obviously) agree, and that is one of the reasons I added that part, I would actually argue that "It is implemented in C, so is probably faster than anything you can come up with yourself" would get around the "no explanation or justification" clause
$endgroup$
– Graipher
2 days ago
add a comment |
$begingroup$
There is a module available for exactly that calculation, python-Levenshtein
. You can install it with pip install python-Levenshtein
.
It is implemented in C, so is probably faster than anything you can come up with yourself.
from Levenshtein import distance as levenshtein_distance
According to the docstring
conventions, your docstring should look like this, i.e. with the indentation aligned to the """
and the line length curtailed to 80 characters.
def calculate_levenshtein_distance(str_1, str_2):
"""
The Levenshtein distance is a string metric for measuring the difference
between two sequences.
It is calculated as the minimum number of single-character edits necessary to
transform one string into another.
"""
...
$endgroup$
There is a module available for exactly that calculation, python-Levenshtein
. You can install it with pip install python-Levenshtein
.
It is implemented in C, so is probably faster than anything you can come up with yourself.
from Levenshtein import distance as levenshtein_distance
According to the docstring
conventions, your docstring should look like this, i.e. with the indentation aligned to the """
and the line length curtailed to 80 characters.
def calculate_levenshtein_distance(str_1, str_2):
"""
The Levenshtein distance is a string metric for measuring the difference
between two sequences.
It is calculated as the minimum number of single-character edits necessary to
transform one string into another.
"""
...
edited Apr 8 at 10:43
answered Apr 8 at 10:37
GraipherGraipher
27.1k54497
27.1k54497
10
$begingroup$
Just to note the module is licensed under GPL 2.0 so watch out if you're using it for work.
$endgroup$
– lucasgcb
Apr 8 at 13:08
$begingroup$
Just to point out a small nitpick to other people who may stumble upon this answer, as per help center: "Every answer must make at least one insightful observation about the code in the question. Answers that merely provide an alternate solution with no explanation or justification do not constitute valid Code Review answers and may be deleted." While this answer does provide alternative and existing module suggestion, it also goes into some suggestions about improving code quality. So it's an example of a decent answer
$endgroup$
– Sergiy Kolodyazhnyy
Apr 9 at 0:02
$begingroup$
Thanks! I did not know of this module. Will check it out
$endgroup$
– Kyra_W
2 days ago
1
$begingroup$
@SergiyKolodyazhnyy While I (obviously) agree, and that is one of the reasons I added that part, I would actually argue that "It is implemented in C, so is probably faster than anything you can come up with yourself" would get around the "no explanation or justification" clause
$endgroup$
– Graipher
2 days ago
add a comment |
10
$begingroup$
Just to note the module is licensed under GPL 2.0 so watch out if you're using it for work.
$endgroup$
– lucasgcb
Apr 8 at 13:08
$begingroup$
Just to point out a small nitpick to other people who may stumble upon this answer, as per help center: "Every answer must make at least one insightful observation about the code in the question. Answers that merely provide an alternate solution with no explanation or justification do not constitute valid Code Review answers and may be deleted." While this answer does provide alternative and existing module suggestion, it also goes into some suggestions about improving code quality. So it's an example of a decent answer
$endgroup$
– Sergiy Kolodyazhnyy
Apr 9 at 0:02
$begingroup$
Thanks! I did not know of this module. Will check it out
$endgroup$
– Kyra_W
2 days ago
1
$begingroup$
@SergiyKolodyazhnyy While I (obviously) agree, and that is one of the reasons I added that part, I would actually argue that "It is implemented in C, so is probably faster than anything you can come up with yourself" would get around the "no explanation or justification" clause
$endgroup$
– Graipher
2 days ago
10
10
$begingroup$
Just to note the module is licensed under GPL 2.0 so watch out if you're using it for work.
$endgroup$
– lucasgcb
Apr 8 at 13:08
$begingroup$
Just to note the module is licensed under GPL 2.0 so watch out if you're using it for work.
$endgroup$
– lucasgcb
Apr 8 at 13:08
$begingroup$
Just to point out a small nitpick to other people who may stumble upon this answer, as per help center: "Every answer must make at least one insightful observation about the code in the question. Answers that merely provide an alternate solution with no explanation or justification do not constitute valid Code Review answers and may be deleted." While this answer does provide alternative and existing module suggestion, it also goes into some suggestions about improving code quality. So it's an example of a decent answer
$endgroup$
– Sergiy Kolodyazhnyy
Apr 9 at 0:02
$begingroup$
Just to point out a small nitpick to other people who may stumble upon this answer, as per help center: "Every answer must make at least one insightful observation about the code in the question. Answers that merely provide an alternate solution with no explanation or justification do not constitute valid Code Review answers and may be deleted." While this answer does provide alternative and existing module suggestion, it also goes into some suggestions about improving code quality. So it's an example of a decent answer
$endgroup$
– Sergiy Kolodyazhnyy
Apr 9 at 0:02
$begingroup$
Thanks! I did not know of this module. Will check it out
$endgroup$
– Kyra_W
2 days ago
$begingroup$
Thanks! I did not know of this module. Will check it out
$endgroup$
– Kyra_W
2 days ago
1
1
$begingroup$
@SergiyKolodyazhnyy While I (obviously) agree, and that is one of the reasons I added that part, I would actually argue that "It is implemented in C, so is probably faster than anything you can come up with yourself" would get around the "no explanation or justification" clause
$endgroup$
– Graipher
2 days ago
$begingroup$
@SergiyKolodyazhnyy While I (obviously) agree, and that is one of the reasons I added that part, I would actually argue that "It is implemented in C, so is probably faster than anything you can come up with yourself" would get around the "no explanation or justification" clause
$endgroup$
– Graipher
2 days ago
add a comment |
$begingroup$
The code itself is rather clear. There are some smaller changes I would make
tuple unpacking
You can use tuple unpacking to do:
for code, *_ in ndiff(str1, str2):
instead of:
for x in ndiff(str_1, str_2):
code = x[0]
dict results:
Instead of a counter for the additions and removals, I would keep it in 1 dict: counter = ("+": 0, "-": 0)
def levenshtein_distance(str1, str2, ):
counter = "+": 0, "-": 0
distance = 0
for edit_code, *_ in ndiff(str1, str2):
if edit_code == " ":
distance += max(counter.values())
counter = "+": 0, "-": 0
else:
counter[edit_code] += 1
distance += max(counter.values())
return distance
generators
A smaller, less useful variation, is to let this method be a generator, and use the builtin sum
to do the summary. this saves 1 variable inside the function:
def levenshtein_distance_gen(str1, str2, ):
counter = "+": 0, "-": 0
for edit_code, *_ in ndiff(str1, str2):
if edit_code == " ":
yield max(counter.values())
counter = "+": 0, "-": 0
else:
counter[edit_code] += 1
yield max(counter.values())
sum(levenshtein_distance_gen(str1, str2))
timings
The differences in timings between the original and both these variations are minimal, and within the variation of results. This is rather logical, since for simple strings (aaabbbc
and abcabcabc
) 90% of the time is spent in ndiff
$endgroup$
$begingroup$
Awesome suggestions. I had not even considered the generator approach, but it looks very nice. Thanks
$endgroup$
– Kyra_W
2 days ago
add a comment |
$begingroup$
The code itself is rather clear. There are some smaller changes I would make
tuple unpacking
You can use tuple unpacking to do:
for code, *_ in ndiff(str1, str2):
instead of:
for x in ndiff(str_1, str_2):
code = x[0]
dict results:
Instead of a counter for the additions and removals, I would keep it in 1 dict: counter = ("+": 0, "-": 0)
def levenshtein_distance(str1, str2, ):
counter = "+": 0, "-": 0
distance = 0
for edit_code, *_ in ndiff(str1, str2):
if edit_code == " ":
distance += max(counter.values())
counter = "+": 0, "-": 0
else:
counter[edit_code] += 1
distance += max(counter.values())
return distance
generators
A smaller, less useful variation, is to let this method be a generator, and use the builtin sum
to do the summary. this saves 1 variable inside the function:
def levenshtein_distance_gen(str1, str2, ):
counter = "+": 0, "-": 0
for edit_code, *_ in ndiff(str1, str2):
if edit_code == " ":
yield max(counter.values())
counter = "+": 0, "-": 0
else:
counter[edit_code] += 1
yield max(counter.values())
sum(levenshtein_distance_gen(str1, str2))
timings
The differences in timings between the original and both these variations are minimal, and within the variation of results. This is rather logical, since for simple strings (aaabbbc
and abcabcabc
) 90% of the time is spent in ndiff
$endgroup$
$begingroup$
Awesome suggestions. I had not even considered the generator approach, but it looks very nice. Thanks
$endgroup$
– Kyra_W
2 days ago
add a comment |
$begingroup$
The code itself is rather clear. There are some smaller changes I would make
tuple unpacking
You can use tuple unpacking to do:
for code, *_ in ndiff(str1, str2):
instead of:
for x in ndiff(str_1, str_2):
code = x[0]
dict results:
Instead of a counter for the additions and removals, I would keep it in 1 dict: counter = ("+": 0, "-": 0)
def levenshtein_distance(str1, str2, ):
counter = "+": 0, "-": 0
distance = 0
for edit_code, *_ in ndiff(str1, str2):
if edit_code == " ":
distance += max(counter.values())
counter = "+": 0, "-": 0
else:
counter[edit_code] += 1
distance += max(counter.values())
return distance
generators
A smaller, less useful variation, is to let this method be a generator, and use the builtin sum
to do the summary. this saves 1 variable inside the function:
def levenshtein_distance_gen(str1, str2, ):
counter = "+": 0, "-": 0
for edit_code, *_ in ndiff(str1, str2):
if edit_code == " ":
yield max(counter.values())
counter = "+": 0, "-": 0
else:
counter[edit_code] += 1
yield max(counter.values())
sum(levenshtein_distance_gen(str1, str2))
timings
The differences in timings between the original and both these variations are minimal, and within the variation of results. This is rather logical, since for simple strings (aaabbbc
and abcabcabc
) 90% of the time is spent in ndiff
$endgroup$
The code itself is rather clear. There are some smaller changes I would make
tuple unpacking
You can use tuple unpacking to do:
for code, *_ in ndiff(str1, str2):
instead of:
for x in ndiff(str_1, str_2):
code = x[0]
dict results:
Instead of a counter for the additions and removals, I would keep it in 1 dict: counter = ("+": 0, "-": 0)
def levenshtein_distance(str1, str2, ):
counter = "+": 0, "-": 0
distance = 0
for edit_code, *_ in ndiff(str1, str2):
if edit_code == " ":
distance += max(counter.values())
counter = "+": 0, "-": 0
else:
counter[edit_code] += 1
distance += max(counter.values())
return distance
generators
A smaller, less useful variation, is to let this method be a generator, and use the builtin sum
to do the summary. this saves 1 variable inside the function:
def levenshtein_distance_gen(str1, str2, ):
counter = "+": 0, "-": 0
for edit_code, *_ in ndiff(str1, str2):
if edit_code == " ":
yield max(counter.values())
counter = "+": 0, "-": 0
else:
counter[edit_code] += 1
yield max(counter.values())
sum(levenshtein_distance_gen(str1, str2))
timings
The differences in timings between the original and both these variations are minimal, and within the variation of results. This is rather logical, since for simple strings (aaabbbc
and abcabcabc
) 90% of the time is spent in ndiff
answered Apr 8 at 13:51
Maarten FabréMaarten Fabré
5,179517
5,179517
$begingroup$
Awesome suggestions. I had not even considered the generator approach, but it looks very nice. Thanks
$endgroup$
– Kyra_W
2 days ago
add a comment |
$begingroup$
Awesome suggestions. I had not even considered the generator approach, but it looks very nice. Thanks
$endgroup$
– Kyra_W
2 days ago
$begingroup$
Awesome suggestions. I had not even considered the generator approach, but it looks very nice. Thanks
$endgroup$
– Kyra_W
2 days ago
$begingroup$
Awesome suggestions. I had not even considered the generator approach, but it looks very nice. Thanks
$endgroup$
– Kyra_W
2 days ago
add a comment |
Kyra_W is a new contributor. Be nice, and check out our Code of Conduct.
Kyra_W is a new contributor. Be nice, and check out our Code of Conduct.
Kyra_W is a new contributor. Be nice, and check out our Code of Conduct.
Kyra_W is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f217065%2fcalculate-levenshtein-distance-between-two-strings-in-python%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown