How many permutations does a countable set have? [duplicate] The 2019 Stack Overflow Developer Survey Results Are InIs symmetric group on natural numbers countable?Prove why this algorithm to compute all list permutations worksLooks like we picked the wrong theorem to popularize (Cantor diagonalization)Can someone please clarify combinations vs permutations?Mapping from reals to naturals if naturals can be used infinitely many timesWhy are positive rational numbers countable but real numbers are not?Is there a model of ZFC in which every real number is definable?Series that converge to every real number via permutationSeries and ConsistencyThe set of all digits in a real numberExplicit bijection between $Bbb R$ and permutations of $Bbb N$

Why was M87 targeted for the Event Horizon Telescope instead of Sagittarius A*?

writing variables above the numbers in tikz picture

How to notate time signature switching consistently every measure

Pokemon Turn Based battle (Python)

Why doesn't UInt have a toDouble()?

How do you keep chess fun when your opponent constantly beats you?

Why can't devices on different VLANs, but on the same subnet, communicate?

Deal with toxic manager when you can't quit

Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?

Is it correct to say the Neural Networks are an alternative way of performing Maximum Likelihood Estimation? if not, why?

Relationship between Gromov-Witten and Taubes' Gromov invariant

Straighten subgroup lattice

What is the motivation for a law requiring 2 parties to consent for recording a conversation

Why “相同意思的词” is called “同义词” instead of "同意词"?

Mathematics of imaging the black hole

If a sorcerer casts the Banishment spell on a PC while in Avernus, does the PC return to their home plane?

Keeping a retro style to sci-fi spaceships?

How do I free up internal storage if I don't have any apps downloaded?

What's the name of these plastic connectors

Can withdrawing asylum be illegal?

What to do when moving next to a bird sanctuary with a loosely-domesticated cat?

What does もの mean in this sentence?

Does adding complexity mean a more secure cipher?

Slides for 30 min~1 hr Skype tenure track application interview



How many permutations does a countable set have? [duplicate]



The 2019 Stack Overflow Developer Survey Results Are InIs symmetric group on natural numbers countable?Prove why this algorithm to compute all list permutations worksLooks like we picked the wrong theorem to popularize (Cantor diagonalization)Can someone please clarify combinations vs permutations?Mapping from reals to naturals if naturals can be used infinitely many timesWhy are positive rational numbers countable but real numbers are not?Is there a model of ZFC in which every real number is definable?Series that converge to every real number via permutationSeries and ConsistencyThe set of all digits in a real numberExplicit bijection between $Bbb R$ and permutations of $Bbb N$










2












$begingroup$



This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers



I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?










share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



marked as duplicate by Asaf Karagila Apr 8 at 12:37


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.

















  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    Apr 8 at 12:38















2












$begingroup$



This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers



I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?










share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



marked as duplicate by Asaf Karagila Apr 8 at 12:37


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.

















  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    Apr 8 at 12:38













2












2








2


0



$begingroup$



This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers



I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?










share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$





This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers



I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?





This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers







permutations real-numbers






share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited Apr 8 at 12:38









Asaf Karagila

308k33441775




308k33441775






New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked Apr 8 at 10:53









Lorenzo Lorenzo

184




184




New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




marked as duplicate by Asaf Karagila Apr 8 at 12:37


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Asaf Karagila Apr 8 at 12:37


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.













  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    Apr 8 at 12:38
















  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    Apr 8 at 12:38















$begingroup$
While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
$endgroup$
– Asaf Karagila
Apr 8 at 12:38




$begingroup$
While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
$endgroup$
– Asaf Karagila
Apr 8 at 12:38










1 Answer
1






active

oldest

votes


















6












$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20

















1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20















6












$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20













6












6








6





$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$



Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Apr 8 at 10:57









5xum5xum

92.6k394162




92.6k394162











  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20
















  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20















$begingroup$
Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
$endgroup$
– Lorenzo
Apr 8 at 11:07




$begingroup$
Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
$endgroup$
– Lorenzo
Apr 8 at 11:07




1




1




$begingroup$
@Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
$endgroup$
– 5xum
Apr 8 at 11:08




$begingroup$
@Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
$endgroup$
– 5xum
Apr 8 at 11:08












$begingroup$
just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
$endgroup$
– Lorenzo
Apr 8 at 11:12




$begingroup$
just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
$endgroup$
– Lorenzo
Apr 8 at 11:12












$begingroup$
@Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
$endgroup$
– 5xum
Apr 8 at 11:13





$begingroup$
@Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
$endgroup$
– 5xum
Apr 8 at 11:13













$begingroup$
Ok I get it now, thanks
$endgroup$
– Lorenzo
Apr 8 at 11:20




$begingroup$
Ok I get it now, thanks
$endgroup$
– Lorenzo
Apr 8 at 11:20



Popular posts from this blog

Sum ergo cogito? 1 nng

419 nièngy_Soadمي 19bal1.5o_g

Queiggey Chernihivv 9NnOo i Zw X QqKk LpB